Giả sử một thành phố có dân số năm 2022 là khoảng 2,1 triệu người và tốc độ gia tăng dân số trung bình mỗi năm là 0,75%.
a) Dự đoán dân số của thành phố đó vào năm 2032.
b) Nếu tốc độ gia tăng dân số vẫn giữ nguyên như trên thì ước tính vào năm nào dân số của thành phố đó sẽ tăng gấp đôi so với năm 2022.
‒ Biến đổi, đưa \({u_{n + 1}} = {u_n}.q\), khi đó dãy số là cấp số nhân có công bội \(q\).
‒ Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
a) Giả sử dân số của thành phố đó từ năm 2022 là dãy số \(\left( {{u_n}} \right)\) với \({u_1} = 2,1\).
Advertisements (Quảng cáo)
Ta có:
\(\begin{array}{l}{u_1} = 2,1\\{u_2} = {u_1} + {u_1}.\frac{{0,75}}{{100}} = {u_1}.\left( {1 + \frac{{0,75}}{{100}}} \right)\\{u_3} = {u_2} + {u_2}.\frac{{0,75}}{{100}} = {u_2}\left( {1 + \frac{{0,75}}{{100}}} \right)\\{u_4} = {u_3} + {u_3}.\frac{{0,75}}{{100}} = {u_3}\left( {1 + \frac{{0,75}}{{100}}} \right)\\ \vdots \\{u_n} = {u_{n - 1}} + {u_{n - 1}}.\frac{{0,75}}{{100}} = {u_{n - 1}}\left( {1 + \frac{{0,75}}{{100}}} \right)\end{array}\)
Vậy dân số của thành phố đó từ năm 2022 tạo thành cấp số nhân với số hạng đầu \({u_1} = 2,1\) và công bội \(q = 1 + \frac{{0,75}}{{100}}\).
Dân số của thành phố đó vào năm 2032 là: \({u_{11}} = {u_1}.{q^{10}} = 2,1.{\left( {1 + \frac{{0,75}}{{100}}} \right)^{10}} \approx 2,26\) (triệu người).
b) Giả sử sau \(n - 1\) năm thì dân số thành phố đó tăng gấp đôi. Khi đó ta có:
\({u_n} = 2{u_1} \Leftrightarrow {u_1}.{q^{n - 1}} = 2{u_1} \Leftrightarrow {q^{n - 1}} = 2 \Leftrightarrow {\left( {1 + \frac{{0,75}}{{100}}} \right)^{n - 1}} = 2 \Leftrightarrow n \approx 93,77 \Rightarrow n = 94\)
Vậy sau 93 năm thì dân số thành phố đó tăng gấp đôi.
Vậy ước tính vào năm 2115 dân số của thành phố đó sẽ tăng gấp đôi so với năm 2022.