Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Giải mục 4 trang 37, 38 Toán 11 tập 1 – Chân...

Giải mục 4 trang 37, 38 Toán 11 tập 1 - Chân trời sáng tạo: Trong mặt phẳng toạ độ Oxy, cho T là điểm trên trục tang có toạ độ là \(\left( {1;\sqrt 3...

Phân tích và giải HĐ 4, TH 4 mục 4 trang 37, 38 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 5. Phương trình lượng giác cơ bản. Trong mặt phẳng toạ độ Oxy, cho T là điểm trên trục tang có toạ độ là (left( {1;sqrt 3 } right)) (Hình 5)...Trong mặt phẳng toạ độ Oxy, cho T là điểm trên trục tang có toạ độ là \(\left( {1;\sqrt 3

Hoạt động 4

Trong mặt phẳng toạ độ Oxy, cho T là điểm trên trục tang có toạ độ là \(\left( {1;\sqrt 3 } \right)\) (Hình 5). Những điểm nào trên đường tròn lượng giác x có \(tanx = \sqrt 3 \)? Xác định số đo của các góc lượng giác đó.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Quan sát hình vẽ để trả lời.

Answer - Lời giải/Đáp án

Những điểm biểu diễn góc x trên đường tròn lượng giác có \(tanx = \sqrt 3 \) là M và N.

Điểm M là điểm biểu diễn các góc lượng giác có số đo \(\frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).

Điểm N là điểm biểu diễn các góc lượng giác có số đo \( - \frac{{2\pi }}{3} + k\pi ,k \in \mathbb{Z}\).


Thực hành 4

Giải các phương trình sau:

\(\begin{array}{*{20}{l}}{a){\rm{ }}tanx = 0;}\\{b){\rm{ }}tan\left( {30^\circ -3x} \right) = tan75^\circ .}\end{array}\)

Advertisements (Quảng cáo)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha = m\). Khi đó:

\(\tan {\rm{x}} = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb{Z}.\)

\(\tan x = \tan {\alpha ^o} \Leftrightarrow x = {\alpha ^o} + k{180^o},k \in \mathbb{Z}.\)

Answer - Lời giải/Đáp án

a) Điều kiện xác định là: \(x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

Vì tan0 = 0 nên phương trình tanx = 0 có các nghiệm \(x = k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}.\)

Vậy tập nghiệm của phương trình là: \(S = \{ k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{*{20}{l}}{b){\rm{ }}tan\left( {30^\circ -3x} \right) = tan75^\circ }\\{ \Leftrightarrow \;tan\left( {3x-30^\circ } \right) = tan\left( {-{\rm{ }}75^\circ } \right)}\\{ \Leftrightarrow \;3x-30^\circ = -75^\circ + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;3x = -\,45^\circ + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;x = -15^\circ + k120^\circ ,k\; \in \;\mathbb{Z}.}\end{array}\)

Vậy tập nghiệm của phương trình là: \(S = \{ -15^\circ + k120^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{l}{\rm{c, cos}}\left( {x + \frac{\pi }{{12}}} \right) = {\rm{cos}}\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi \\x + \frac{\pi }{{12}} = - \frac{{3\pi }}{{12}} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = - \frac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{\pi }{6} + k2\pi ; - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}} \right\}\)

Advertisements (Quảng cáo)