Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Lý thuyết Giá trị lượng giác của một góc lượng giác –...

Lý thuyết Giá trị lượng giác của một góc lượng giác - Toán 11 Chân trời sáng tạo: Giá trị lượng giác của góc lượng giác - Trên đường tròn, lấy điểm M(x;y) như hình...

Gợi ý giải lý thuyết Giá trị lượng giác của một góc lượng giác - SGK Toán 11 Chân trời sáng tạo Bài 2. Giá trị lượng giác của một góc lượng giác. Giá trị lượng giác của góc lượng giác...

1. Giá trị lượng giác của góc lượng giác

- Trên đường tròn, lấy điểm M(x;y) như hình vẽ. Khi đó:

x=cosα, y=sinα.

tanα=sinαcosα=yx(x0)

cotα=cosαsinα=xy(y0)

- Các giá trị sinα, cosα, tanα, cotα được gọi là các giá trị lượng giác của góc lượng giác α.

*Chú ý:

a, Trục tung là trục sin, trục hoành là trục côsin.

Trục As có gốc ở điểm A(1;0) và song song với trục sin là trục tang.

Trục Bt có gốc ở điểm B(0;1) và song song với trục coossin gọi là trục côtang.

b, sinαcosα xác định với mọi αR.

tanαxác định với các góc απ2+kπ,kZ.

cotα xác định với các góc αkπ,kZ.

c, Với mọi góc lượng giác α và số nguyên k, ta có:

sin(α+k2π)=sinαcos(α+k2π)=cosαtan(α+kπ)=tanαcot(α+kπ)=cotα

Advertisements (Quảng cáo)

d, Bảng các giá trị lượng giác đặc biệt

2. Tính giá trị lượng giác của một góc bằng máy tính cầm tay

- Lần lượt ấn các phím SHIFT MENU 2:

Để chọn đơn vị độ: ấn phím 1 (Degree).

Để chọn đơn vị radian: ấn phím 2 (Radian).

- Ấn các phím MENU 1 để vào chế độ tính toán.

3. Hệ thức cơ bản giữa các giá trị lượng giác của một góc lượng giác

sin2α+cos2α=11+tan2α=1cos2α(απ2+kπ,kZ)1+cot2α=1sin2α(αkπ,kZ)tanα.cotα=1(αkπ2,kZ)

4. Giá trị lượng giác của các góc lượng giác có liên quan đặc biệt

  • Hai góc đối nhau αα

sin(α)=sinαcos(α)=cosαtan(α)=tanαcot(α)=cotα

  • Hai góc bù nhau (απ-α)

sin(πα)=sinαcos(πα)=cosαtan(πα)=tanαcot(πα)=cotα

  • Hai góc phụ nhau (απ2-α)

sin(π2α)=cosαcos(π2α)=sinαtan(π2α)=cotαcot(π2α)=tanα

  • Hai góc hơn kém π(và π+α)

sin(π+α)=sinαcos(π+α)=cosαtan(π+α)=tanαcot(π+α)=cotα

Advertisements (Quảng cáo)