Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Bài 8.13 trang 78 Toán 11 tập 2 – Kết nối tri...

Bài 8.13 trang 78 Toán 11 tập 2 - Kết nối tri thức: Có hai túi đựng các viên bị có cùng kích thước và khối lượng...

- Nếu hai biến cố A và B độc lập với nhau thì P(AB) = P(A).P(B). Giải chi tiết bài 8.13 trang 78 SGK Toán 11 tập 2 - Kết nối tri thức Bài 30. Công thức nhân xác suất cho hai biến cố độc lập. Có hai túi đựng các viên bị có cùng kích thước và khối lượng. Túi I có 3 viên bi màu xanh và 7 viên bị màu đỏ...

Question - Câu hỏi/Đề bài

Có hai túi đựng các viên bị có cùng kích thước và khối lượng. Túi I có 3 viên bi màu xanh và 7 viên bị màu đỏ. Túi II có 10 viên bi màu xanh và 6 viên bi màu đỏ. Từ mỗi túi, lấy ngẫu nhiên ra một viên bị. Tính xác suất để:

a) Hai viên bi được lấy có cùng màu xanh;

b) Hai viên bi được lấy có cùng màu đỏ;

c) Hai viên bi được lấy có cùng màu;

d) Hai viên bi được lấy không cùng màu.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Nếu hai biến cố A và B độc lập với nhau thì P(AB) = P(A).P(B).

- Nếu A và B là hai biến cố xung khắc thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)

- Công thức xác suất của biến cố đối \(P\left( A \right) = 1 - P\left( {\overline A } \right)\)

Answer - Lời giải/Đáp án

Vì hai túi là khác nhau nên biến cố lấy một viên bi mỗi túi là độc lập.

Gọi biến cố A: “Hai viên bi được lấy có cùng màu xanh”, biến cố B: “Hai viên bi được lấy có cùng màu đỏ”, biến cố C: “Hai viên bi được lấy có cùng màu”

Advertisements (Quảng cáo)

a) Xác suất lấy được viên bi màu xanh từ túi I là \(\frac{3}{{10}}\)

Xác suất lấy được viên bi màu xanh từ túi II là \(\frac{{10}}{{16}} = \frac{5}{8}\)

Xác suất lấy được hai viên bi cùng màu xanh là \(\frac{3}{{10}}.\frac{5}{8} = \frac{3}{{16}}\)

b) Xác suất lấy được viên bi màu đỏ từ túi I là \(\frac{7}{{10}}\)

Xác suất lấy được viên bi màu đỏ từ túi II là \(\frac{6}{{16}} = \frac{3}{8}\)

Xác suất lấy được hai viên bi cùng màu đỏ là \(\frac{7}{{10}}.\frac{3}{8} = \frac{{21}}{{80}}\)

c) Ta có \(C = A \cup B\) mà A và B xung khắc nên

\(P\left( C \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) = \frac{3}{{16}} + \frac{{21}}{{80}} = \frac{9}{{20}}\)

Vậy xác suất để hai viên bi được lấy có cùng màu là \(\frac{9}{{20}}.\)

d) Gọi biến cố D: “Hai viên bi được lấy không cùng màu”

Khi đó \(\overline D = C\)

\( \Rightarrow P\left( D \right) = 1 - P\left( {\overline D } \right) = 1 - P\left( C \right) = 1 - \frac{9}{{20}} = \frac{{11}}{{20}}\)

Vậy xác suất để hai viên bi được lấy không cùng màu là \(\frac{{11}}{{20}}.\)

Advertisements (Quảng cáo)