Hệ số góc của tiếp tuyến \(f’\left( {{x_0}} \right)\) với \({x_0}\) là hoành độ tiếp điểm. Giải chi tiết bài 9.24 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức Bài tập cuối chương IX. Cho hàm số (y = {x^3} - 3{x^2} + 4x - 1)...
Cho hàm số \(y = {x^3} - 3{x^2} + 4x - 1\) có đồ thị là \((C)\). Hệ số góc nhỏ nhất của tiếp tuyến tại một điểm \(M\) trên đồ thị \((C)\) là
A. 1 .
B. 2.
C. -1 .
D. 3 .
Advertisements (Quảng cáo)
Hệ số góc của tiếp tuyến \(f’\left( {{x_0}} \right)\) với \({x_0}\) là hoành độ tiếp điểm.
Hệ số góc của tiếp tuyến tại một điểm \(M\) trên đồ thị \((C)\) là
\(k = y’ = 3{x^2} - 6x + 4 = 3\left( {{x^2} - 2x + 1} \right) + 1 = 3{\left( {x - 1} \right)^2} + 1 \ge 1\)
Vậy hệ số góc nhỏ nhất của tiếp tuyến tại một điểm \(M\) trên đồ thị \((C)\) là 1.
Đáp án A