Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 31 trang 117 SGK Hình học 11 Nâng cao, Cho hình...

Câu 31 trang 117 SGK Hình học 11 Nâng cao, Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng Tính khoảng cách giữa hai đường thẳng BC’ và CD’...

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Tính khoảng cách giữa hai đường thẳng BC’ và CD’. Câu 31 trang 117 SGK Hình học 11 Nâng cao - Bài 5: Khoảng cách

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Tính khoảng cách giữa hai đường thẳng BC’ và CD’

Gọi O, O’ lần lượt là tâm các hình vuông ABCD, A’B’C’D’ của hình lập phương ABCD.A’B’C’D’ cạnh a.

* Ta chứng minh B’D ⊥ (BA’C) và B’D ⊥ (ACD’)

Ta có: \(\left\{ {\matrix{   {A’C’ \bot B’D’}  \cr   {A’C’ \bot BB’}  \cr  } } \right. \Rightarrow A’C’ \bot \left( {BB’D’D} \right)\)

Mà B’D ⊂ (BB’D’D) nên B’D ⊥ A’C’ (1)

Tương tự \(\left\{ {\matrix{   {AB’ \bot A’B}  \cr   {A’B \bot B’C’}  \cr  } } \right. \Rightarrow A’B \bot \left( {AB’C’D} \right)\)

Advertisements (Quảng cáo)

Mà B’D ⊂ (AB’C’D) nên B’D ⊥ A’B (2)

Từ (1) và (2) suy ra B’D ⊥ (BA’C’)

Tương tự ta cũng chứng minh được B’D ⊥ (ACD’)

* Hai mặt phẳng (BA’C’) và (ACD’) song song với nhau, vuông góc với đoạn B’D và chia B’D thành 3 phần bằng nhau (xét hình bình hành BB’DD’ và BO // D’O’)

Do đó khoảng cách giữa mp(BA’C) và mp(ACD’) là \({{B’D} \over 3} = {{a\sqrt 3 } \over 3}\)

* Khoảng cách giữa BC’ và CD’

Khoảng cách giữa hai đường thẳng chéo nhau BC’ và CD’ bằng khoảng cách giữa hai mặt phẳng song song : mp(BA’C’) và mp(ACD’).

Vậy khoảng cách đó là \({{a\sqrt 3 } \over 3}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)