Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 66 trang 127 SBT Hình 11 nâng cao: Bài 5: Khoảng...

Câu 66 trang 127 SBT Hình 11 nâng cao: Bài 5: Khoảng cách...

Câu 66 trang 127 Sách bài tập Hình học 11 Nâng cao. a) Tính khoảng cách từ điểm M đến mặt phẳng (SAC).. Bài 5: Khoảng cách

Trên cạnh AD của hình vuông ABCD cạnh a, ta lấy điểm M với AM = x (0 < x < AD) và trên nửa đường thẳng At vuông góc với mặt phẳng (ABCD) lấy điểm S sao cho AS = y.

a) Tính khoảng cách từ điểm M đến mặt phẳng (SAC).

b) Gọi I là trung điểm của SC và H là hình chiếu của I trên CM. Chứng minh rằng điểm H thuộc đường tròn cố định khi M chạy trên AD và S chạy trên At.

 

Advertisements (Quảng cáo)

a) Gọi O là giao điểm của AC và BD thì \(DB \bot \left( {SAC} \right)\). Kẻ MN song song với \(DB\left( {N \in AC} \right)\) thì \(MN \bot \left( {SAC} \right)\), do đó khoảng cách từ M đến mp(SAC) bằng MN. Dễ thấy:

\(MN = {{AM} \over {\sqrt 2 }} = {x \over {\sqrt 2 }}\).

b) Ta có IO // SA, do \(SA \bot \left( {ABC{\rm{D}}} \right)\) nên \(I{\rm{O}} \bot \left( {ABC{\rm{D}}} \right)\).

Do \(IH \bot MC\) nên \(HO \bot HC\) (định lí ba đường vuông góc). Vậy \(\widehat {OHC} = {90^0}\), tức là H thuộc đường tròn đường kính OC nằm trong mặt phẳng chứa hình vuông ABCD.

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)