Tính vi phân của hàm số \(y = {1 \over {{{\left( {1 + \tan x} \right)}^2}}}\) tại điểm \(x = {\pi \over 6}\) ứng với \(\Delta x = {\pi \over {360}}\) (tính chính xác đến hàng phần vạn).
Ta có: \(df\left( x \right) = {{ - 2\left( {1 + \tan x} \right){1 \over {{{\cos }^2}x}}} \over {{{\left( {1 + \tan x} \right)}^4}}}.\Delta x = {{ - 2\Delta x} \over {{{\cos }^2}x{{\left( {1 + \tan x} \right)}^3}}}\)
Advertisements (Quảng cáo)
Suy ra: \(df\left( {{\pi \over 6}} \right) = {{ - 2.{\pi \over {360}}} \over {{{\cos }^2}{\pi \over 6}{{\left( {1 + \tan {\pi \over 6}} \right)}^3}}} = {{ - \pi } \over {180.{3 \over 4}{{\left( {1 + {1 \over {\sqrt 3 }}} \right)}^3}}}\)
\(\approx - 0,0059\)