Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 56 trang 221 SGK Đại số và Giải tích 11 Nâng...

Câu 56 trang 221 SGK Đại số và Giải tích 11 Nâng cao, Cho parabol (P)...

Cho parabol (P) :. Câu 56 trang 221 SGK Đại số và Giải tích 11 Nâng cao - Câu hỏi và bài tập ôn tập chương V

Cho parabol (P) : \(y = {x^2}.\) Gọi M1 và M2 là hai điểm thuộc (P), lần lượt có hoành độ là x1 = -2 và x2 = 1.

Hãy tìm trên (P) một điểm C sao cho tiếp tuyến tại C song song với cát tuyến M1M2. Viết phương trình của tiếp tuyến đó.

Các điểm M1 và M2 có tọa độ là M1(-2 ; 4); M2(1 ; 1)

Hệ số góc của cát tuyến M1M2 là \(\tan \varphi  = {{\Delta y} \over {\Delta x}} = {{4 - 1} \over { - 2 - 1}} =  - 1\)

Advertisements (Quảng cáo)

Vì tiếp tuyến tại điểm \(C\left( {{x_0};x_0^2} \right)\) song song với cát tuyến M1M2 nên ta có :

\(y’\left( {{x_0}} \right) =  - 1 \Leftrightarrow 2{x_0} =  - 1 \Leftrightarrow {x_0} = {{ - 1} \over 2},\)

Suy ra tọa độ của điểm C là \(\left( { - {1 \over 2};{1 \over 4}} \right)\)

Vậy phương trình tiếp tuyến phải tìm là :

\(y = \left( { - 1} \right)\left( {x + {1 \over 2}} \right) + {1 \over 4} \Leftrightarrow y =  - x - {1 \over 4}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)