Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập nên bao nhiêu số chẵn có ba chữ số khác nhau ?. Câu 56 trang 93 SGK Đại số và Giải tích 11 Nâng cao - Câu hỏi và bài tập ôn tập chương II
Bài 56. Từ các chữ số \(0, 1, 2, 3, 4, 5\) có thể lập nên bao nhiêu số chẵn có ba chữ số khác nhau ?
Để lập số chẵn có 3 chữ số \(\overline {abc} \), đầu tiên ta lấy chữ số c trong tập \(\{2, 4\}\). Có hai cách chọn chữ số c.
Advertisements (Quảng cáo)
Sau đó ta chọn chữ số b trong tập \(\{1, 2, 3, 4, 5\}\). Có 4 cách chọn chữ số b.
Cuối cùng, ta chọn số a trong tập \(\{1, 2, 3, 4, 5\} \backslash \{c, b\}\). Có 3 cách chọn chữ số a.
Vậy theo qui tắc nhân, ta có \(2.4.3 = 24\) số chẵn thỏa mãn điều kiện đầu bài.