Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 1 trang 57 sgk đại số và giải tích 11: Bài...

Bài 1 trang 57 sgk đại số và giải tích 11: Bài 3. Nhị thức Niu - Tơn...

Bài 1 trang 57 sgk đại số và giải tích 11: Bài 3. Nhị thức Niu - Tơn. Viết khai triển theo công thức nhị thức Niu - Tơn:

Bài 1. Viết khai triển theo công thức nhị thức Niu - Tơn:
a) \({\left( {a{\rm{ }} + {\rm{ }}2b} \right)^5}\);                         

b) \({\left( {a{\rm{ }} - {\rm{ }}\sqrt 2 } \right)^6}\)                       

c) \({\left( {x - {1 \over x}} \right)^{13}}\)

a) Theo dòng 5 của tam giác Pascal, ta có:

\({(a + 2b)^5} = {a^5} + 5{a^4}.2b + 10{a^3}.{(2b)^2} + 10{a^2}{(2b)^3}\)

\(+ 5a.{(2b)^4} + {(2b)^5}\)\(={a^5} + 10{a^4}b + 40{a^3}{b^2} + 80{a^2}{b^3} + 80a{b^4} + 32{b^5}\)

b) Theo dòng 6 của tam giác Pascal, ta có:

Advertisements (Quảng cáo)

\({\left( {a - \sqrt 2 } \right)^6} = {a^6} + 6{a^5}\left( { - \sqrt 2 } \right) + 15{a^4}{\left( { - \sqrt 2 } \right)^2} \)

\(+ 20{a^3}{\left( { - \sqrt 2 } \right)^3} + 15{a^{^2}}{\left( { - \sqrt 2 } \right)^4} + 6a{\left( { - \sqrt 2 } \right)^5}\)

\(+ {\left( { - \sqrt 2 } \right)^6}\)\(={a^6} - 6\sqrt 2 {a^5} + 30{a^4}- 40\sqrt 2 {a^3}\)

\(+ 60{a^2} - 24\sqrt 2 a + 8\)

c) Theo công thức nhị thức Niu – Tơn, ta có:

\({\left( {x - {1 \over x}} \right)^{13}} = \sum\limits_{k = 0}^{13} {C_{13}^k{x^{13 - k}}{{\left( { - {1 \over x}} \right)}^k} = }\)

\(\sum\limits_{k = 0}^{13} {C_{13}^k{{( - 1)}^k}{x^{13 - 2k}}} \)

Nhận xét: Trong trường hợp số mũ \(n\) khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)