Bài 1. Viết khai triển theo công thức nhị thức Niu - Tơn:
a) \({\left( {a{\rm{ }} + {\rm{ }}2b} \right)^5}\);
b) \({\left( {a{\rm{ }} - {\rm{ }}\sqrt 2 } \right)^6}\)
c) \({\left( {x - {1 \over x}} \right)^{13}}\)
a) Theo dòng 5 của tam giác Pascal, ta có:
\({(a + 2b)^5} = {a^5} + 5{a^4}.2b + 10{a^3}.{(2b)^2} + 10{a^2}{(2b)^3}\)
\(+ 5a.{(2b)^4} + {(2b)^5}\)\(={a^5} + 10{a^4}b + 40{a^3}{b^2} + 80{a^2}{b^3} + 80a{b^4} + 32{b^5}\)
b) Theo dòng 6 của tam giác Pascal, ta có:
Advertisements (Quảng cáo)
\({\left( {a - \sqrt 2 } \right)^6} = {a^6} + 6{a^5}\left( { - \sqrt 2 } \right) + 15{a^4}{\left( { - \sqrt 2 } \right)^2} \)
\(+ 20{a^3}{\left( { - \sqrt 2 } \right)^3} + 15{a^{^2}}{\left( { - \sqrt 2 } \right)^4} + 6a{\left( { - \sqrt 2 } \right)^5}\)
\(+ {\left( { - \sqrt 2 } \right)^6}\)\(={a^6} - 6\sqrt 2 {a^5} + 30{a^4}- 40\sqrt 2 {a^3}\)
\(+ 60{a^2} - 24\sqrt 2 a + 8\)
c) Theo công thức nhị thức Niu – Tơn, ta có:
\({\left( {x - {1 \over x}} \right)^{13}} = \sum\limits_{k = 0}^{13} {C_{13}^k{x^{13 - k}}{{\left( { - {1 \over x}} \right)}^k} = }\)
\(\sum\limits_{k = 0}^{13} {C_{13}^k{{( - 1)}^k}{x^{13 - 2k}}} \)
Nhận xét: Trong trường hợp số mũ \(n\) khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.