Câu 2.33 trang 65 sách bài tập Đại số và Giải tích 11 Nâng cao. Giải. Bài 3: Nhị thức Niu - tơn
Cho đa giác đều có 2n cạnh \({A_1}{A_2}...{A_{2n}}\) nội tiếp trong một đường tròn. Biết rằng tam giác có đỉnh lấy trong 2n điểm \({A_1}...{A_{2n}}\) nhiều gấp 20 lần số hình chữ nhật có đỉnh lấy trong 2n điểm \({A_1}{A_2}...{A_{2n}}\). Tìm n.
Có \(C_{2n}^3\) tam giác. Mỗi hình chữ nhật được xác định bởi việc chọn 2 trong số n đỉnh ở nửa đường tròn. Vậy có \(C_n^2\) hình chữ nhật. Ta có phương trình \(20C_n^2 = C_{2n}^3\)
Advertisements (Quảng cáo)
\(\Rightarrow n=8\).