Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 2 trang 104 SGK Hình học 11: Bài 3. Đường thẳng...

Bài 2 trang 104 SGK Hình học 11: Bài 3. Đường thẳng vuông góc với mặt phẳng....

Bài 2 trang 104 SGK Hình học 11: Bài 3. Đường thẳng vuông góc với mặt phẳng.. Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung cạnh đáy BC

Bài 2. Cho tứ diện \(ABCD\) có hai mặt \(ABC\) và \(BCD\) là hai tam giác cân có chung cạnh đáy \(BC\).Gọi \(I\) là trung điểm của cạnh \(BC\).

a) Chứng minh rằng \(BC\) vuông góc với mặt phẳng \(ADI\).

b) Gọi \(AH\) là đường cao của tam giác \(ADI\), chứng minh rằng \(AH\) vuông góc với mặt phẳng \(BCD\).

a) Tam giác \(ABC\) cân tại \(A\) nên ta có đường trung tuyến ứng với cạnh đáy đồng thời là đường cao do đó: \(AI\bot BC\)

Tương tự ta có: \(DI\bot BC\)

Advertisements (Quảng cáo)

Ta có:

$$\left. \matrix{
AI \bot BC \hfill \cr
DI \bot BC \hfill \cr
AI \cap DI = {\rm{\{ }}I{\rm{\} }} \hfill \cr} \right\} \Rightarrow BC \bot (ADI)$$

b) Ta có \(AH\) là đường cao của tam giác \(ADI\) nên \(AH\bot DI\)

Mặt khác: \(BC\bot (ADI)\) mà \(AH\subset (ADI)\) nên \(AH\bot BC\)

Ta có 

$$\left. \matrix{
AH \bot BC \hfill \cr
AH \bot DI \hfill \cr
BC \cap DI = {\rm{\{ }}I{\rm{\} }} \hfill \cr} \right\} \Rightarrow AH \bot (BCD)$$

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)