Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 3 trang 104 Hình học 11: Bài 3. Đường thẳng vuông...

Bài 3 trang 104 Hình học 11: Bài 3. Đường thẳng vuông góc với mặt phẳng....

Bài 3 trang 104 SGK Hình học 11: Bài 3. Đường thẳng vuông góc với mặt phẳng.. Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có SA=SB=SC=SD.Gọi O là giao điểm của AC và BD. Chứng minh rằng:

Bài 3. Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có \(SA=SB=SC=SD\).Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Chứng minh rằng:

a) Đường thẳng \(SO\) vuông góc với mặt phẳng \((ABCD)\);

b) Đường thẳng \( AC\) vuông góc với mặt phẳng \((SBD)\) và đường thẳng \(BD\) vuông góc với mặt phẳng \(SAC\).

a) Theo giả thiết \(SA=SC\) nên tam giác \(SAC\) cân tại \(S\) 

\(O\) là giao của hai đường chéo hình bình hành nên \(O\) là trung điểm của \(AC\) và \(BD\).

Advertisements (Quảng cáo)

Do đó \(SO\) vừa là trung tuyến đồng thời là đường cao trong tam giác \(SAC\) hay \(SO\bot AC\)                     (1)

Chứng minh tương tự ta được: \(SO\bot BD\)           (2)

Từ (1) và (2) suy ra \(SO\bot (ABCD)\).

b)  \(ABCD\) là hình thoi nên \(AC\bot BD\)                 (3)

Từ (1) và (3) suy ra \(AC\bot (SBD)\)

Từ (2) và (3) suy ra \(BD\bot (SAC)\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)