Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 3 trang 33 sách giáo khoa hình học lớp 11: Bài...

Bài 3 trang 33 sách giáo khoa hình học lớp 11: Bài 8. Phép Đồng Dạng...

Bài 3 trang 33 sách giáo khoa hình học lớp 11: Bài 8. Phép Đồng Dạng. Trong mặt phẳng Oxy cho điểm I (1;1) và đường trong tâm I bán kính 2. Viết phương trình của đường trong là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O

Bài 3. Trong mặt phẳng \(Oxy\) cho điểm \(I (1;1)\) và đường trong tâm \(I\) bán kính \(2\). Viết phương trình của đường trong là ảnh của đường tròn trên qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm \(O\), góc \( 45^{\circ}\) và phép vị tự tâm \(O\), tỉ số \( \sqrt{2}\).

Advertisements (Quảng cáo)

Phép quay tâm \(O\), góc \( 45^{\circ}\), biến \(I\) thành \(I'(0\);\( \sqrt{2}\)), phép vị tự tâm \(O\), tỉ số \( \sqrt{2}\) biến \(I’\) thành \(I” = (0; \)\( \sqrt{2}.\)\( \sqrt{2}\)) \(= (0;2)\). Từ đó suy ra phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm \(O\), góc \( 45^{\circ}\) và phép vị tự tâm \(O\), tỉ số \( \sqrt{2}\) biến đường tròn \((I;2)\) thành đường tròn \((I”;2\)\( \sqrt{2}\)). Phương trình của đường tròn đó là

\(x^{2}\) + \((y-2)^{2} = 8\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)