Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 4 trang 122 đại số 11: Bài 1. Giới hạn của...

Bài 4 trang 122 đại số 11: Bài 1. Giới hạn của dãy số...

Bài 4 trang 122 sgk đại số 11: Bài 1. Giới hạn của dãy số. Để trang hoàng cho căn hộ của mình, chú chuột Mickey quyết định tô màu một miếng bìa hình vuông cạnh bằng 1.

Bài 4. Để trang hoàng cho căn hộ của mình, chú chuột Mickey quyết định tô màu một miếng bìa hình vuông cạnh bằng \(1\). Nó tô màu xám các hình vuông nhỏ được đánh dấu \(1, 2, 3, .. n, ...\) trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (h.51)

Giả sử quy trình tô màu của Mickey có thể tiến ra vô hạn.

a) Gọi \(u_n\) là diện tích của hình vuông màu xám thứ \(n\). Tính \(u_1, u_2, u_3\) và \(u_n\).

b) Tính \(\lim S_n\) với \(S_n= {u_{1}} + {u_{2}} + {u_{3}} + ... + {u_{n}}\)

a) Hình vuông thứ nhất có cạnh bằng \(\frac{1}{2}\) nên

Advertisements (Quảng cáo)

\(u_1 =(\frac{1}{2}\))= \(\frac{1}{4}\).

Hình vuông thứ hai có cạnh bằng \(\frac{1}{4}\) nên \({u_2} = {\left( {{1 \over 4}} \right)^2} = {1 \over {{4^2}}}\).

Hình vuông thứ ba có cạnh bằng \(\frac{1}{8}\) nên  \({u_3} = {\left( {{1 \over 8}} \right)^2} = {1 \over {{4^3}}}\)

Tương tự, ta có \(u_n=\frac{1}{4^{n}}\)

b) Dãy số \((u_n)\) là một cặp số nhân lùi vô hạn với  \(u_1=\frac{1}{4}\) và  \(q = \frac{1}{4}\). Do đó

\(\lim S_n=\frac{u_{1}}{1-q}= \frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)