Bài 15. Nêu định nghĩa hàm số liên tục tại một điểm, trên một khoảng. Nêu hình ảnh hình học của một hàm số liên tục trên một khoảng.
_ Định nghĩa 1
+ Hàm số \(f(x)\) xác định trên khoảng \(k\) được gọi là liên tục tại \(x_0∈ k\) nếu:
\(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\)
+ Hàm số không liên tục tại điểm \(x_0\) thì được gọi là gián đoạn tại điểm đó.
_ Định nghĩa 2
a) Hàm số \(f(x)\) được gọi là liên tục trên một khoảng nếu nó liên tục tại mọi điểm trên khoảng đó.
Advertisements (Quảng cáo)
b) Hàm số \(f(x)\) được gọi là liên tục trên \([a, b]\) nếu nó liên tục trên khoảng \((a, b)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = f(a);\mathop {\lim }\limits_{x \to {b^ - }} f(x) = f(b)\)
Nhận xét:
_ Đồ thị của hàm liên tục trên một khoảng là một đường liền trên khoảng đó (hình dưới)
_ Hình 2 cho ví dụ về đồ thị của một hàm số không liên tục trên khoảng \((a, b)\)