Bài 6. Cho hai hàm số \(f(x) = {{1 - {x^2}} \over {{x^2}}}\) và \(g(x) = {{{x^3} + {x^2} + 1} \over {{x^2}}}\)
a) Tính \(\mathop {\lim }\limits_{x \to 0} f(x);\mathop {\lim }\limits_{x \to 0} g(x);\mathop {\lim }\limits_{x \to + \infty } f(x);\mathop {\lim }\limits_{x \to + \infty } g(x)\)
b) Hai đường cong sau đây (h.60) là đồ thị của hai hàm số đã cho. Từ kết quả câu a), hãy xác định xem đường cong nào là đồ thị của mỗi hàm số đó.
a)
+) \(\mathop {\lim }\limits_{x \to 0} f(x) = \mathop {\lim }\limits_{x \to 0} {{1 - {x^2}} \over {{x^2}}} = + \infty \)
Vì: \(\mathop {\lim }\limits_{x \to 0} (1 - {x^2}) = 1 > 0,\mathop {\lim }\limits_{x \to 0} {x^2} = 0;{x^2} > 0,\forall x \ne 0\)
+) \(\mathop {\lim }\limits_{x \to 0} g(x) = \mathop {\lim }\limits_{x \to 0} {{{x^3} + {x^2} + 1} \over {{x^2}}} = + \infty \)
Vì: \(\mathop {\lim }\limits_{x \to 0} ({x^3} + {x^2} + 1) = 1 > 0,\mathop {\lim }\limits_{x \to 0} {x^2} = 0,{x^2} > 0,\forall x \ne 0\)
Advertisements (Quảng cáo)
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } {{1 - {x^2}} \over {{x^2}}} \cr
& = \mathop {\lim }\limits_{x \to + \infty } {{{x^2}({1 \over {{x^2}}} - 1)} \over {{x^2}}} = \mathop {\lim }\limits_{x \to + \infty } ({1 \over {{x^2}}} - 1) = - 1 \cr} \)
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } g(x) = \mathop {\lim }\limits_{x \to + \infty } {{{x^3} + {x^2} + 1} \over {{x^2}}} = \mathop {\lim }\limits_{x \to + \infty } {{{x^3}(1 + {1 \over x} + {1 \over {{x^3}}})} \over {{x^3}({1 \over x})}} \cr
& = \mathop {\lim }\limits_{x \to + \infty } {{1 + {1 \over x} + {1 \over {{x^3}}}} \over {{1 \over x}}} = + \infty \cr} \)
b) Gọi \((C_1)\) và \((C_2)\) lần lượt là hai đồ thị của hàm số \(y = f(x)\) và \(y = g(x)\)
Vì
\(\left\{ \matrix{
\mathop {\lim }\limits_{x \to 0} f(x) = + \infty \hfill \cr
\mathop {\lim }\limits_{x \to 0} g(x) = + \infty \hfill \cr} \right.\)
nên hai đồ thị \((C_1)\) và \((C_2)\) có nhánh vô tận đi lên khi \(x \rightarrow 0\).
+) Vì \(\mathop {\lim }\limits_{x \to + \infty } f(x) = - 1\) nên \((C_1)\) có nhánh vô tận tiến gần đến đường thẳng \(y = -1\) \(khi x \rightarrow ∞\)
+) Vì \(\mathop {\lim }\limits_{x \to + \infty } g(x) = + \infty \) \((C_2)\) có nhánh vô tận đi lên khi \(x \rightarrow +∞\)
Dựa vào đặc điểm của \((C_1)\) và \((C_2)\) như trên ta có\((C_1)\) là đồ thị b và \((C_2)\) là đồ thị a.