Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Lý thuyết véc tơ trong không gian: Bài 1. Vectơ trong không...

Lý thuyết véc tơ trong không gian: Bài 1. Vectơ trong không gian...

Lý thuyết véc tơ trong không gian: Bài 1. Vectơ trong không gian. Định nghĩa: véc tơ trong không gian là một đoạn thẳng có hướng..

A. Tóm Tắt Kiến Thức.

1. Định nghĩa: Véctơ trong không gian là một đoạn thẳng có hướng. Kí hiệu \(\overrightarrow{AB}\) chỉ véctơ có điểm đầu \(A\), điểm cuối \(B\). Véctơ còn đc kí hiệu là \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\)...

2. Các quy tắc về véctơ. 

- Quy tắc 3 điểm: \(\overrightarrow{AC}\) = \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\).

                 Hoặc: \(\overrightarrow{AC}\) = \(\overrightarrow{BC}\) - \(\overrightarrow{AB}\).

- Quy tắc hình bình hành: cho hình bình hành \(ABCD\): \(\overrightarrow{AC}\) = \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\).

- Quy tắc trung tuyến: \(AM\) là trung tuyến của tam giác \(ABC\) thì: \(\overrightarrow{AM}\) = \(\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC}).\)

- Quy tắc trọng tâm: \(G\) là trọng tâm tam giác \(ABC\) thì: \(\overrightarrow{GA}\) + \(\overrightarrow{GB}\) + \(\overrightarrow{GC}\) = \(\overrightarrow{0}\).

Advertisements (Quảng cáo)

- Quy tắc hình hộp: cho hình hộp \(ABCD.A’B’C’D’\) thì: \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) + \(\overrightarrow{AA’}\) = \(\overrightarrow{AC’}\).

3. Sự đồng phẳng của các véctơ, điều kiện để ba véctơ đồng phẳng.

    Định nghĩa: ba véctơ gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.

    Điều kiện để ba véctơ đồng phẳng:

    Định lí 1: cho ba véc tơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\), trong đó véctơ  \(\overrightarrow{a}\), \(\overrightarrow{b}\) không cùng phương. Điều kiện cần và đủ để ba véctơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\) đồng phẳng là có các số \(m, n\) sao cho \(\overrightarrow{c}\) = \(m\overrightarrow{a}\) + \(n\overrightarrow{b}\). Hơn nữa các số \(m, n\) là duy nhất.

    Định lí 2: nếu \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\),  là ba véctơ không đồng phẳng thì với mỗi véctơ \(\overrightarrow{d}\) ta tìm được các số \(m, n, p\) sao cho \(\overrightarrow{d}\) = \(m\overrightarrow{a}\) + \(n\overrightarrow{b}\) + \(p\overrightarrow{c}\). Hơn nữa các số \(m, n, p\) là duy nhất.

   

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)