Sử dụng biểu thức toạ độ của phép nhân một số với một vectơ. Hướng dẫn giải - Bài 32 trang 76 sách bài tập toán 12 - Cánh diều - Bài tập cuối chương 2. Cho vectơ (overrightarrow u = left( {1;2; - 3} right)). Toạ độ của vectơ ( - 3overrightarrow u ) là: A. (left( {3;6; - 9} right)). B. (left( { - 3; - 6; - 9} right)). C. (left( {3;6;9} right))...
Cho vectơ \(\overrightarrow u = \left( {1;2; - 3} \right)\). Toạ độ của vectơ \( - 3\overrightarrow u \) là:
A. \(\left( {3;6; - 9} \right)\)
B. \(\left( { - 3; - 6; - 9} \right)\)
C. \(\left( {3;6;9} \right)\)
D. \(\left( { - 3; - 6;9} \right)\)
Advertisements (Quảng cáo)
Sử dụng biểu thức toạ độ của phép nhân một số với một vectơ:
Nếu \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) thì \(m\overrightarrow u = \left( {m{x_1};m{y_1};m{z_1}} \right)\) với \(m \in \mathbb{R}\).
\( - 3\overrightarrow u = \left( {\left( { - 3} \right).1;\left( { - 3} \right).2;\left( { - 3} \right).\left( { - 3} \right)} \right) = \left( { - 3; - 6;9} \right)\).
Chọn D.