Trong không gian với hệ toạ độ \(Oxyz\), cho \(A\left( {1;0;1} \right),B\left( {2;1;2} \right)\) và \(C\left( {0; - 4;0} \right)\).
a) Chứng minh rằng ba điểm \(A,B,C\) không thẳng hàng.
b) Tìm toạ độ của điểm \(D\) sao cho tứ giác \(ABCD\) là hình bình hành.
c) Tìm toạ độ trọng tâm \(G\) của tam giác \(ABC\).
d) Tính chu vi của tam giác \(ABC\).
e) Tính \(\cos \widehat {BAC}\).
‒ Sử dụng tính chất: Ba điểm \(A,B,C\) thẳng hàng nếu hai vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.
‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).
‒ Sử dụng công thức toạ độ trọng tâm \(G\) của tam giác \(ABC\):
\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).
‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):
\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).
‒ Sử dụng công thức tính góc của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).
Advertisements (Quảng cáo)
a) Ta có: \(\overrightarrow {AB} = \left( {1;1;1} \right),\overrightarrow {AC} = \left( { - 1; - 4; - 1} \right),k\overrightarrow {AC} = \left( { - k; - 4k; - k} \right)\).
Suy ra \(\overrightarrow {AB} \ne k\overrightarrow {AC} ,\forall k \in \mathbb{R}\).
Vậy ba điểm \(A,B,C\) không thẳng hàng.
b) Giả sử \(D\left( {{x_D};{y_D};{z_D}} \right)\).
\(\overrightarrow {DC} = \left( {0 - {x_D};\left( { - 4} \right) - {y_D};0 - {z_D}} \right) = \left( { - {x_D}; - 4 - {y_D}; - {z_D}} \right)\).
Tứ giác \(ABCD\) là hình bình hành khi và chỉ khi \(\overrightarrow {AB} = \overrightarrow {DC} \).
\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}1 = - {x_D}\\1 = - 4 - {y_D}\\1 = - {z_D}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = - 1\\{y_D} = - 5\\{z_D} = - 1\end{array} \right.\). Vậy \(D\left( { - 1; - 5; - 1} \right)\).
c) \(G\left( {\frac{{1 + 2 + 0}}{3};\frac{{0 + 1 + \left( { - 4} \right)}}{3};\frac{{1 + 2 + 0}}{3}} \right) \Leftrightarrow G\left( {1; - 1;1} \right)\).
d) Ta có:
\(\begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 ;\\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 1} \right)}^2}} = 3\sqrt 2 ;\\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( { - 4 - 1} \right)}^2} + {{\left( {0 - 2} \right)}^2}} = \sqrt {33} .\end{array}\)
Chu vi tam giác \(ABC\)là: \(\sqrt 3 + 3\sqrt 2 + \sqrt {33} \).
e) Trong tam giác \(ABC\), ta có:
\(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{1.\left( { - 1} \right) + 1.\left( { - 4} \right) + 1.\left( { - 1} \right)}}{{\sqrt 3 .3\sqrt 2 }} = - \frac{{\sqrt 6 }}{3}\).