Trang chủ Lớp 12 SBT Toán 12 - Cánh diều Bài 42 trang 77 SBT Toán 12 – Cánh diều: Trong không...

Bài 42 trang 77 SBT Toán 12 - Cánh diều: Trong không gian với hệ toạ độ Oxyz, cho A 1;0;1, B 2;1;2 và C 0; - 4;0...

‒ Sử dụng tính chất: Ba điểm \(A, B, C\) thẳng hàng nếu hai vectơ \(\overrightarrow {AB} , \overrightarrow {AC} \) cùng phương. Lời giải bài tập, câu hỏi - Bài 42 trang 77 sách bài tập toán 12 - Cánh diều - Bài tập cuối chương 2. Trong không gian với hệ toạ độ \(Oxyz\), cho \(A\left( {1;0;1} \right), B\left( {2;1;2} \right)\) và \(C\left( {0; - 4;0} \right)\). a) Chứng minh rằng ba điểm \(A, B, C\) không thẳng hàng...

Question - Câu hỏi/Đề bài

Trong không gian với hệ toạ độ \(Oxyz\), cho \(A\left( {1;0;1} \right),B\left( {2;1;2} \right)\) và \(C\left( {0; - 4;0} \right)\).

a) Chứng minh rằng ba điểm \(A,B,C\) không thẳng hàng.

b) Tìm toạ độ của điểm \(D\) sao cho tứ giác \(ABCD\) là hình bình hành.

c) Tìm toạ độ trọng tâm \(G\) của tam giác \(ABC\).

d) Tính chu vi của tam giác \(ABC\).

e) Tính \(\cos \widehat {BAC}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

‒ Sử dụng tính chất: Ba điểm \(A,B,C\) thẳng hàng nếu hai vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.

‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).

‒ Sử dụng công thức toạ độ trọng tâm \(G\) của tam giác \(ABC\):

\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).

‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):

\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).

‒ Sử dụng công thức tính góc của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):

\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Ta có: \(\overrightarrow {AB} = \left( {1;1;1} \right),\overrightarrow {AC} = \left( { - 1; - 4; - 1} \right),k\overrightarrow {AC} = \left( { - k; - 4k; - k} \right)\).

Suy ra \(\overrightarrow {AB} \ne k\overrightarrow {AC} ,\forall k \in \mathbb{R}\).

Vậy ba điểm \(A,B,C\) không thẳng hàng.

b) Giả sử \(D\left( {{x_D};{y_D};{z_D}} \right)\).

\(\overrightarrow {DC} = \left( {0 - {x_D};\left( { - 4} \right) - {y_D};0 - {z_D}} \right) = \left( { - {x_D}; - 4 - {y_D}; - {z_D}} \right)\).

Tứ giác \(ABCD\) là hình bình hành khi và chỉ khi \(\overrightarrow {AB} = \overrightarrow {DC} \).

\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}1 = - {x_D}\\1 = - 4 - {y_D}\\1 = - {z_D}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = - 1\\{y_D} = - 5\\{z_D} = - 1\end{array} \right.\). Vậy \(D\left( { - 1; - 5; - 1} \right)\).

c) \(G\left( {\frac{{1 + 2 + 0}}{3};\frac{{0 + 1 + \left( { - 4} \right)}}{3};\frac{{1 + 2 + 0}}{3}} \right) \Leftrightarrow G\left( {1; - 1;1} \right)\).

d) Ta có:

\(\begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 ;\\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 1} \right)}^2}} = 3\sqrt 2 ;\\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( { - 4 - 1} \right)}^2} + {{\left( {0 - 2} \right)}^2}} = \sqrt {33} .\end{array}\)

Chu vi tam giác \(ABC\)là: \(\sqrt 3 + 3\sqrt 2 + \sqrt {33} \).

e) Trong tam giác \(ABC\), ta có:

\(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{1.\left( { - 1} \right) + 1.\left( { - 4} \right) + 1.\left( { - 1} \right)}}{{\sqrt 3 .3\sqrt 2 }} = - \frac{{\sqrt 6 }}{3}\).

Advertisements (Quảng cáo)