Cho hình hộp \(ABCD.A’B’C’D’\). Khẳng định nào sau đây là đúng?
A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \).
B. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC’} \).
C. \(\overrightarrow {AA’} + \overrightarrow {AC} = \overrightarrow {AC’} \).
D. \(\overrightarrow {AA’} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \).
Ta kiểm tra từng đáp án cho đến khi tìm được đáp án đúng.
Đáp án: C.
Advertisements (Quảng cáo)
+ Xét đáp án A:
Ta có \(ABCD\) là hình bình hành do đó \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \Rightarrow \overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AB} + \overrightarrow {AD} \ne \overrightarrow {AD} \).
Suy ra \(\overrightarrow {AB} + \overrightarrow {AC} \)\( \ne \overrightarrow {AD} \) do đó đáp án A sai.
+ Xét đáp án B:
Ta có \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \ne \overrightarrow {AC’} \) suy ra \(\overrightarrow {AB} + \overrightarrow {AD} \ne \overrightarrow {AC’} \) do đó đáp án B sai.
+ Xét đáp án C:
Ta có \(\overrightarrow {AA’} + \overrightarrow {AC} = \overrightarrow {AC’} \Leftrightarrow \overrightarrow {AA’} + \overrightarrow {AC} - \overrightarrow {AC’} = 0 \Leftrightarrow \overrightarrow {AA’} + \overrightarrow {C’C} = 0\) mà \(\overrightarrow {AA’} = - \overrightarrow {C’C} \) do đó
\(\overrightarrow {AA’} + \overrightarrow {C’C} = 0\) đúng. Suy ra đáp án C đúng.
Vậy ta chọn C.