Cho hình lập phương \(ABCD.A’B’C’D’\) có độ dài mỗi cạnh bằng 2. Tích vô hướng \(\overrightarrow {AB} \cdot \overrightarrow {B’D’} \) bằng
A. 4
B. \(2\sqrt 2 \)
C. \( - 2\sqrt 2 \)
D. \( - 4\)
Advertisements (Quảng cáo)
Ta lập hệ trục tọa độ phù hợp, sau đó tìm tọa độ các điểm cần thiết để tính tích vô hướng.
Đáp án: D.
Lập hệ trục tọa độ \(Oxyz\) với gốc tọa độ là \(A\), \(B\) thuộc tia \(Ox\), \(C’\) thuộc tia \(Oy\) và \(A’\) thuộc tia \(Oz\), khi đó ta có \(A\left( {0;0;0} \right)\) và \(B\left( {2,0,0} \right)\).
Ta có \(\overrightarrow {B’D’} = \overrightarrow {BD} \) suy ra \(\overrightarrow {AB} \cdot \overrightarrow {B’D’} = \overrightarrow {AB} \cdot \overrightarrow {BD} \). Tọa độ của \(D\) là \(\left( {0;2;0} \right)\).
Có \(\overrightarrow {AB} = \left( {2;0;0} \right)\), \(\overrightarrow {BD} = \left( { - 2;2;0} \right)\) do đó \(\overrightarrow {AB} \cdot \overrightarrow {B’D’} = \overrightarrow {AB} \cdot \overrightarrow {BD} = - 4\).
Vậy ta chọn đáp án D.