Đánh giá dựa vào điều kiện xác định của x. Hướng dẫn giải bài tập 1 trang 19 SGK Toán 12 tập 1 - Cánh diều Bài 2. Tính đơn điệu của hàm số. Nếu hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) thỏa mãn \(f'\left( x \right) = \sin x - 2023...
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) thỏa mãn \(f’\left( x \right) = \sin x - 2023,\forall x \in \mathbb{R}\) thì giá trị lớn nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ {1;2} \right]\) bằng:
A. \(f\left( 0 \right)\).
B. \(f\left( 1 \right)\).
C. \(f\left( {1,5} \right)\).
D. \(f\left( 2 \right)\).
Advertisements (Quảng cáo)
Đánh giá dựa vào điều kiện xác định của x.
Do \(f’\left( x \right) < 0\forall x \in \mathbb{R}\) nên hàm số nghịch biến và liên tục trên \(\mathbb{R}\).
Vậy giá trị lớn nhất của hàm số trên đoạn \(\left[ {1;2} \right]\) bằng \(f\left( 1 \right)\)