Trang chủ Lớp 12 SGK Toán 12 - Cánh diều Giải mục 1 trang 74,75 Toán 12 tập 1 – Cánh diều:...

Giải mục 1 trang 74,75 Toán 12 tập 1 - Cánh diều: Trong không gian với hệ tọa độ Oxyz (Hình 36)...

\(\overrightarrow i = (1;0;0);\overrightarrow j = (0;1;0);\overrightarrow k = (0;0;1)\). Áp dụng quy tắc nhân vecto với một số và quy tắc cộng trừ 2 vecto. Trả lời mục 1 trang 74,75 SGK Toán 12 tập 1 - Cánh diều Bài 3. Biểu thức tọa độ của các phép toán vecto. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto...

Question - Câu hỏi/Đề bài

Trả lời câu hỏi Hoạt động 1 trang 74 SGK Toán 12 Cánh diều

Trong không gian với hệ tọa độ Oxyz (Hình 36), cho hai vecto \(\overrightarrow u = ({x_1};{y_1};{z_1})\) và \(\overrightarrow v = ({x_2};{y_2};{z_2})\).

a) Biểu diễn các vecto \(\overrightarrow u ,\overrightarrow v \) theo ba vecto \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)

b) Biểu diễn các vecto \(\overrightarrow u + \overrightarrow v \), \(\overrightarrow u - \overrightarrow v \), \(m\overrightarrow u (m \in \mathbb{R})\) theo ba vecto \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)

c) Tìm tọa độ các vecto \(\overrightarrow u + \overrightarrow v \), \(\overrightarrow u - \overrightarrow v \), \(m\overrightarrow u (m \in \mathbb{R})\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

\(\overrightarrow i = (1;0;0);\overrightarrow j = (0;1;0);\overrightarrow k = (0;0;1)\). Áp dụng quy tắc nhân vecto với một số và quy tắc cộng trừ 2 vecto

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) \(\overrightarrow u = ({x_1};{y_1};{z_1}) = {x_1}\overrightarrow i + {y_1}\overrightarrow j + {z_1}\overrightarrow k \)

\(\overrightarrow v = ({x_2};{y_2};{z_2}) = {x_2}\overrightarrow i + {y_2}\overrightarrow j + {z_2}\overrightarrow k \)

b) \(\overrightarrow u + \overrightarrow v = {x_1}\overrightarrow i + {y_1}\overrightarrow j + {z_1}\overrightarrow k + {x_2}\overrightarrow i + {y_2}\overrightarrow j + {z_2}\overrightarrow k = ({x_1} + {x_2})\overrightarrow i + ({y_1} + {y_2})\overrightarrow j + ({z_1} + {z_2})\overrightarrow k \)

\(\overrightarrow u - \overrightarrow v = {x_1}\overrightarrow i + {y_1}\overrightarrow j + {z_1}\overrightarrow k - {x_2}\overrightarrow i - {y_2}\overrightarrow j - {z_2}\overrightarrow k = ({x_1} - {x_2})\overrightarrow i + ({y_1} - {y_2})\overrightarrow j + ({z_1} - {z_2})\overrightarrow k \)

\(m\overrightarrow u = m({x_1}\overrightarrow i + {y_1}\overrightarrow j + {z_1}\overrightarrow k ) = m{x_1}\overrightarrow i + m{y_1}\overrightarrow j + m{z_1}\overrightarrow k \)

c) \(\overrightarrow u + \overrightarrow v = ({x_1} + {x_2})\overrightarrow i + ({y_1} + {y_2})\overrightarrow j + ({z_1} + {z_2})\overrightarrow k = ({x_1} + {x_2};{y_1} + {y_2};{z_1} + {z_2})\)

\(\overrightarrow u - \overrightarrow v = ({x_1} - {x_2})\overrightarrow i + ({y_1} - {y_2})\overrightarrow j + ({z_1} - {z_2})\overrightarrow k = ({x_1} - {x_2};{y_1} - {y_2};{z_1} - {z_2})\)

\(m\overrightarrow u = m{x_1}\overrightarrow i + m{y_1}\overrightarrow j + m{z_1}\overrightarrow k = (m{x_1};m{y_1};m{z_1})\)

Advertisements (Quảng cáo)