Hàm số \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) khi \(\int {f\left( x \right)dx} = F\left( x \right) + C\). Giải chi tiết Giải bài tập 2 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo - Bài tập cuối chương 4 . Hàm số nào sau đây là một nguyên hàm của hàm số (y = frac{1}{{{x^2}}})? A. (frac{1}{{{x^3}}}) B.
Câu hỏi/bài tập:
Hàm số nào sau đây là một nguyên hàm của hàm số \(y = \frac{1}{{{x^2}}}\)?
A. \(\frac{1}{{{x^3}}}\)
B. \( - \frac{1}{x}\)
C. \(\frac{1}{x}\)
D. \( - \frac{1}{{{x^3}}}\)
Advertisements (Quảng cáo)
Hàm số \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) khi \(\int {f\left( x \right)dx} = F\left( x \right) + C\)
Ta có: \(\int {\frac{1}{{{x^2}}}dx} = \int {{x^{ - 2}}dx} = \frac{{{x^{ - 1}}}}{{ - 1}} + C = \frac{{ - 1}}{x} + C\)
Với \(C = 0\), ta sẽ thu được kết quả là hàm số ở đáp án B.
Vậy đáp án đúng là B.