Câu hỏi/bài tập:
Tổng số các đường tiệm cận của đồ thị hàm số y=√x2−1x là
A. 0.
B. 1.
C. 2.
D. 3.
Advertisements (Quảng cáo)
Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng y=y0 gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số y=f(x) nếu lim hoặc \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}
Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng x = {x_0} gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số y = f\left( x \right) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ; \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ; \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty ; \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty
TXĐ: D = \left( { - \infty ; - 1} \right] \cup \left[ {1; + \infty } \right).
Ta có: \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} - 1} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left| x \right|\sqrt {1 - \frac{1}{x}} }}{x} = 1;\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} - 1} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left| x \right|\sqrt {1 - \frac{1}{x}} }}{x} = - 1
Do đó, đồ thị hàm số y = \frac{{\sqrt {{x^2} - 1} }}{x} có hai đường tiệm cận ngang là y = 1;y = - 1.
Chọn C