Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Bài tập 5.13 trang 48 Toán 12 tập 2 – Kết nối...

Bài tập 5.13 trang 48 Toán 12 tập 2 - Kết nối tri thức: Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua...

Sử dụng kiến thức về lập phương trình đường thẳng đi qua hai điểm để viết phương trình: Trong không gian Oxyz. Giải chi tiết Giải bài tập 5.13 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức - Bài 15. Phương trình đường thẳng trong không gian . Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Trong không gian Oxyz, viết các phương trình tham số và chính tắc của đường thẳng \(\Delta \) đi qua hai điểm \(A\left( {2;3; - 1} \right)\) và \(B\left( {1; - 2;4} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về lập phương trình đường thẳng đi qua hai điểm để viết phương trình: Trong không gian Oxyz, cho hai điểm phân biệt \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\). Đường thẳng \({A_1}{A_2}\) có vectơ chỉ phương là \(\overrightarrow {{A_1}{A_2}} \left( {{x_2} - {x_1};{y_2} - {y_1};{z_2} - {z_1}} \right)\).

Đường thẳng \({A_1}{A_2}\) có phương trình đường thẳng tham số là: \(\left\{ \begin{array}{l}x = {x_1} + \left( {{x_2} - {x_1}} \right)t\\y = {y_1} + \left( {{y_2} - {y_1}} \right)t\\z = {z_1} + \left( {{z_2} - {z_1}} \right)t\end{array} \right.\left( {t \in \mathbb{R}} \right)\)

Advertisements (Quảng cáo)

Sử dụng kiến thức về phương trình chính tắc của đường thẳng để tìm vectơ chỉ phương và điểm thuộc đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) với a, b, c là các số khác 0. Hệ phương trình \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \).

Answer - Lời giải/Đáp án

Đường thẳng AB đi qua điểm \(A\left( {2;3; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow {AB} \left( { - 1; - 5;5} \right)\). Do đó:

Phương trình tham số của đường thẳng AB là: \(\left\{ \begin{array}{l}x = 2 - t\\y = 3 - 5t\\z = - 1 + 5t\end{array} \right.\).

Phương trình chính tắc của đường thẳng AB là: \(\frac{{x - 2}}{{ - 1}} = \frac{{y - 3}}{{ - 5}} = \frac{{z + 1}}{5}\).

Advertisements (Quảng cáo)