Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Bài tập 5.41 trang 62 Toán 12 tập 2 – Kết nối...

Bài tập 5.41 trang 62 Toán 12 tập 2 - Kết nối tri thức: Trong không gian Oxyz, cho đường thẳng d: \(\left\{ \begin{array}{l}x = 1 + t\\y = - 2 + t\\z =...

Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương: Trong không gian Oxyz. Hướng dẫn cách giải/trả lời Giải bài tập 5.41 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức - Bài tập cuối chương 5 . Trong không gian Oxyz, cho đường thẳng d: \(\left\{ \begin{array}{l}x = 1 + t\\y = - 2 + t\\z =

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Trong không gian Oxyz, cho đường thẳng d: \(\left\{ \begin{array}{l}x = 1 + t\\y = - 2 + t\\z = 4 - 2t\end{array} \right.\). Viết phương trình mặt phẳng (P) chứa đường thẳng d và gốc tọa độ O.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:

+ Tìm vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Nhận thấy điểm O không thuộc đường thẳng d.

Đường thẳng d đi qua điểm \(A\left( {1; - 2;4} \right)\) và có vectơ chỉ phương là \(\overrightarrow u = \left( {1;1;2} \right)\).

Ta có: \(\overrightarrow {OA} = \left( {1; - 2;4} \right)\)

\(\left[ {\overrightarrow {OA} ;\overrightarrow u } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&4\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&1\\2&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 2}\\1&1\end{array}} \right|} \right) = \left( { - 8;2;3} \right)\)

Mặt phẳng (P) đi qua điểm \(O\left( {0;0;0} \right)\) và nhận \(\left[ {\overrightarrow {OA} ;\overrightarrow u } \right] = \left( { - 8;2;3} \right)\) làm một vectơ pháp tuyến nên phương trình mặt phẳng (P) là: \( - 8x + 2y + 3z = 0\)

Advertisements (Quảng cáo)