Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Bài tập 6.10 trang 78 Toán 12 tập 2 – Kết nối...

Bài tập 6.10 trang 78 Toán 12 tập 2 - Kết nối tri thức: Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên...

Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B. Khi đó. Phân tích, đưa ra lời giải Giải bài tập 6.10 trang 78 SGK Toán 12 tập 2 - Kết nối tri thức - Bài 19. Công thức xác suất toàn phần và công thức Bayes . Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên,

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên.

a) Tính xác suất để vận động viên này đạt huy chương vàng;

b) Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B. Khi đó, ta có công thức sau: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\).

Sử dụng kiến thức về công thức Bayes để tính: Cho A và B là hai biến cố, với \(P\left( B \right) > 0\). Khi đó, ta có công thức sau: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Gọi A là biến cố: “Vận động viên đạt huy chương vàng”, B là biến cố: “Thành viên đội I” thì \(\overline B \) là biến cố: “Thành viên đội II đạt huy chương vàng”.

Do đó, \(P\left( B \right) = \frac{5}{{12}};P\left( {\overline B } \right) = \frac{7}{{12}},P\left( {A|B} \right) = 0,65,P\left( {A|\overline B } \right) = 0,55\)

a) Theo công thức xác suất toàn phần ta có:\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{5}{{12}}.0,65 + \frac{7}{{12}}.0,55 = \frac{{71}}{{120}}\)

Vậy xác suất để vận động viên này đạt huy chương vàng là \(\frac{{71}}{{120}}\)

b) Ta cần tính: \(P\left( {B|A} \right)\). Theo công thức Bayes ta có:

\(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{5}{{12}}.0,65}}{{\frac{{71}}{{120}}}} = \frac{{65}}{{142}}\)

Advertisements (Quảng cáo)