Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Cho hàm số (fleft( x right) = {x^n}left( {n in mathbb{N}*} right))

Cho hàm số \(f\left( x \right) = {x^n}\left( {n \in \mathbb{N}*} \right)\)...

Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh. Hướng dẫn trả lời Câu hỏi Luyện tập 3 trang 7 SGK Toán 12 Kết nối tri thức - Bài 11. Nguyên hàm.

Câu hỏi/bài tập:

Cho hàm số \(f\left( x \right) = {x^n}\left( {n \in \mathbb{N}*} \right)\).

a) Chứng minh rằng hàm số \(F\left( x \right) = \frac{{{x^{n + 1}}}}{{n + 1}}\) là một nguyên hàm của hàm số f(x). Từ đó tìm \(\int {{x^n}dx} \).

b) Từ kết quả câu a, tìm \(\int {k{x^n}dx} \) (với k là hằng số thực khác 0).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F’\left( x \right) = f\left( x \right)\) với mọi x thuộc K.

Advertisements (Quảng cáo)

Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.

Sử dụng tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)

Answer - Lời giải/Đáp án

a) Ta có: \(F’\left( x \right) = {\left( {\frac{{{x^{n + 1}}}}{{n + 1}}} \right)’} = \frac{{\left( {n + 1} \right){x^n}}}{{n + 1}} = {x^n} = f\left( x \right)\) nên hàm số F(x) là một nguyên hàm của hàm số f(x). Do đó, \(\int {{x^n}dx} = \frac{{{x^{n + 1}}}}{{n + 1}} + C\).

b) \(\int {k{x^n}dx} = k\int {{x^n}dx} = \frac{{k.{x^{n + 1}}}}{{n + 1}} + C\).

Advertisements (Quảng cáo)