Câu hỏi/bài tập:
Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A\left( {1; - 2;1} \right),B\left( { - 2;1;0} \right),C\left( { - 2;3;2} \right)\). Hãy chỉ ra một vectơ pháp tuyến của mặt phẳng (ABC).
Sử dụng kiến thức về vectơ pháp tuyến của mặt phẳng để tính: Trong không gian Oxyz, nếu \(\overrightarrow u \), \(\overrightarrow v \) là cặp vectơ chỉ phương của (P) thì \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) là một vectơ pháp tuyến của (P).
Advertisements (Quảng cáo)
Ta có: \(\overrightarrow {AB} \left( { - 3;3; - 1} \right),\overrightarrow {AC} = \left( { - 3;5;1} \right)\). Vì \(\overrightarrow {AB} ,\overrightarrow {AC} \) là các vectơ chỉ phương của mặt phẳng (ABC) nên mặt phẳng (ABC) nhận \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\) làm một vectơ pháp tuyến.
\(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| \begin{array}{l}3\;\;\; - 1\\\;5\;\;\;\;\;1\end{array} \right|;\left| \begin{array}{l} - 1\;\; - 3\\\;\;1\;\; - 3\end{array} \right|;\left| \begin{array}{l} - 3\;\;3\\ - 3\;\;5\end{array} \right|} \right) = \left( {8;6; - 6} \right)\)