Câu hỏi/bài tập:
Trong không gian Oxyz, cho hai vectơ \(\overrightarrow u \), \(\overrightarrow v \) không cùng phương và có giá nằm trong hoặc song song với mặt phẳng (P).
a) Vectơ \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) có khác vectơ-không và giá của nó có vuông góc với cả hai giá của \(\overrightarrow u \), \(\overrightarrow v \) hay không?
b) Mặt phẳng (P) có nhận \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) làm một vectơ pháp tuyến hay không?
Advertisements (Quảng cáo)
Sử dụng kiến thức về tích có hướng của hai vectơ để chứng minh: Trong không gian Oxyz, cho hai vectơ \(\overrightarrow u = \left( {a;b;c} \right)\) và \(\overrightarrow v = \left( {a’;b’;c’} \right)\). Khi đó, vectơ \(\overrightarrow n = \left( {bc’ - b’c;ca’ - c’a;ab’ - a’b} \right)\) vuông góc với cả hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \), được gọi là tích có hướng của \(\overrightarrow u \) và \(\overrightarrow v \), kí hiệu là \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\).
Sử dụng kiến thức về vectơ pháp tuyến của mặt phẳng để chứng minh: Vectơ \(\overrightarrow n \ne \overrightarrow 0 \) được gọi là vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\) nếu giá của \(\overrightarrow n \) vuông góc với \(\left( \alpha \right)\).
a) Vectơ \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) có khác vectơ-không và giá của \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\)vuông góc với cả hai giá của \(\overrightarrow u \), \(\overrightarrow v \) nếu hai vectơ \(\overrightarrow u \), \(\overrightarrow v \) không cùng phương.
b) Vì hai vectơ \(\overrightarrow u \), \(\overrightarrow v \) không cùng phương và có giá nằm trong hoặc song song với mặt phẳng (P), mà vectơ \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) có giá vuông góc với cả hai giá của \(\overrightarrow u \), \(\overrightarrow v \) nên giá của vectơ \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) vuông góc với mặt phẳng (P). Suy ra, mặt phẳng (P) nhận \(\left[ {\overrightarrow u ,\overrightarrow v } \right]\) làm một vectơ pháp tuyến.