Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Trong không gian Oxyz, cho mặt phẳng (left( alpha right)) đi qua...

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và biết cặp vectơ chỉ phương \(\ u = \left( {a;b;c} \right)...

Sử dụng kiến thức về phương trình mặt phẳng đi qua một điểm và biết vectơ pháp tuyến để viết. Hướng dẫn cách giải/trả lời Câu hỏi Hoạt động 6 trang 33 SGK Toán 12 Kết nối tri thức - Bài 14. Phương trình mặt phẳng.

Câu hỏi/bài tập:

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và biết cặp vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right),\overrightarrow v = \left( {a’;b’;c’} \right)\).

a) Hãy chỉ ra một vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\).

b) Viết phương trình mặt phẳng \(\left( \alpha \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về phương trình mặt phẳng đi qua một điểm và biết vectơ pháp tuyến để viết phương trình: Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\) thì có phương trình là:

Advertisements (Quảng cáo)

\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0 \Leftrightarrow Ax + By + Cz + D = 0\) với \(D = A{x_0} - B{y_0} - C{y_0}\)

Answer - Lời giải/Đáp án

a) Vì \(\overrightarrow u ,\overrightarrow v \) là các vectơ chỉ phương của mặt phẳng \(\left( \alpha \right)\). Do đó, \(\overrightarrow u ,\overrightarrow v \) cùng vuông góc với vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\).

Một vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\) là: \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {bc’ - b’c;ca’ - c’a;ab’ - a’b} \right)\).

b) Vì mặt phẳng \(\left( \alpha \right)\) có một vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\) và đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) nên phương trình mặt phẳng \(\left( \alpha \right)\) là:

\(\left( {bc’ - b’c} \right)\left( {x - {x_0}} \right) + \left( {ca’ - c’a} \right)\left( {y - {y_0}} \right) + \left( {ab’ - a’b} \right)\left( {z - {z_0}} \right) = 0\)

Advertisements (Quảng cáo)