Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Trong không gian Oxyz, viết phương trình mặt cầu (S) trong các...

Trong không gian Oxyz, viết phương trình mặt cầu (S) trong các trường hợp sau: a) Tâm là gốc tọa độ, bán kính \(R = 1\). b) Đường kính AB...

Sử dụng kiến thức về phương trình mặt cầu để viết phương trình mặt cầu: Trong không gian Oxyz. Hướng dẫn cách giải/trả lời Câu hỏi Luyện tập 2 trang 55 SGK Toán 12 Kết nối tri thức - Bài 17. Phương trình mặt cầu.

Câu hỏi/bài tập:

Trong không gian Oxyz, viết phương trình mặt cầu (S) trong các trường hợp sau:

a) Tâm là gốc tọa độ, bán kính \(R = 1\).

b) Đường kính AB, với \(A\left( {1; - 1;2} \right),B\left( {2; - 3; - 1} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Sử dụng kiến thức về phương trình mặt cầu để viết phương trình mặt cầu: Trong không gian Oxyz, mặt cầu (S) tâm I(a; b; c), bán kính R có phương trình \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Answer - Lời giải/Đáp án

a) Mặt cầu (S) có tâm \(O\left( {0;0;0} \right)\), bán kính \(R = 1\) nên có phương trình là: \({x^2} + {y^2} + {z^2} = 1\)

b) Đoạn thẳng AB có trung điểm là \(E\left( {\frac{3}{2}; - 2;\frac{1}{2}} \right)\).

Mặt cầu (S) có bán kính \(R = \frac{1}{2}AB = \frac{1}{2}\sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( { - 3 + 1} \right)}^2} + {{\left( { - 1 - 2} \right)}^2}} = \frac{{\sqrt {14} }}{2}\) và tâm \(E\left( {\frac{3}{2}; - 2;\frac{1}{2}} \right)\). Do đó, (S): \({\left( {x - \frac{3}{2}} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - \frac{1}{2}} \right)^2} = \frac{7}{2}\)

Advertisements (Quảng cáo)