Tính các biểu thức: Bài 15 trang 81 SGK Đại số và Giải tích 12 Nâng cao - Bài 2. Lũy thừa với số mũ thực
Bài 15. Tính các biểu thức: \({\left( {0,{5^{\sqrt 2 }}} \right)^{\sqrt 8 }}\); \({2^{2 - 3\sqrt 5 }}{.8^{\sqrt 5 }}\); \({3^{1 + 2\root 3 \of 2 }}:{9^{\root 3 \of 2 }}\).
Giải
\({\left( {0,{5^{\sqrt 2 }}} \right)^{\sqrt 8 }} = 0,{5^{\sqrt {16} }} = 0,{5^4} = {1 \over {16}}.\)
Advertisements (Quảng cáo)
\({2^{2 - 3\sqrt 5 }}{.8^{\sqrt 5 }} = {2^{2 - 3\sqrt 5 }}{.2^{3\sqrt 5 }} = {2^{2 - 3\sqrt 5 + 3\sqrt 5 }} = {2^2} = 4\)
\({3^{1 + 2\root 3 \of 2 }}:{9^{\root 3 \of 2 }} = {3^{1 + 2\root 3 \of 2 }}:{3^{2\root 3 \of 2 }} = {3^{1 + 2\root 3 \of 2 - 2\root 3 \of 2 }} = {3^1} = 3\)