Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 18 trang 81 SGK Đại số và Giải tích 12 Nâng...

Bài 18 trang 81 SGK Đại số và Giải tích 12 Nâng cao, Viết các biểu thức sau dưới dạng lũy thừa của một số với số mũ hữi tỉ:...

Viết các biểu thức sau dưới dạng lũy thừa của một số với số mũ hữi tỉ. Bài 18 trang 81 SGK Đại số và Giải tích 12 Nâng cao - Bài 2. Lũy thừa với số mũ thực

Bài 18. Viết các biểu thức sau dưới dạng lũy thừa của một số với số mũ hữi tỉ:

a) \(\root 4 \of {{x^2}\root 3 \of x } \,\,\,\,\left( {x > 0} \right);\)       

b) \(\root 5 \of {{b \over a}\root 3 \of {{a \over b}} } \,\,\,\,\left( {a > 0,b > 0} \right);\)

c) \(\root 3 \of {{2 \over 3}\root 3 \of {{2 \over 3}} \sqrt {{2 \over 3}} } ;\) 

d) \(\sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{{{11} \over {16}}}}\,\,\,\,\left( {a > 0} \right).\)

Advertisements (Quảng cáo)

a) \(\root 4 \of {{x^2}\root 3 \of x }  = {\left( {{x^2}.{x^{{1 \over 3}}}} \right)^{{1 \over 4}}} = {\left( {{x^{{7 \over 3}}}} \right)^{{1 \over 4}}} = {x^{{7 \over {12}}}}\)

b) \(\root 5 \of {{b \over a}\root 3 \of {{a \over b}} }  = {\left( {{b \over a}{{\left( {{a \over b}} \right)}^{{1 \over 3}}}} \right)^{{1 \over 5}}} = {\left( {{{\left( {{a \over b}} \right)}^{ - 1}}{{\left( {{a \over b}} \right)}^{{1 \over 3}}}} \right)^{{1 \over 5}}} = {\left( {{{\left( {{a \over b}} \right)}^{ - {2 \over 3}}}} \right)^{{1 \over 5}}} = {\left( {{a \over b}} \right)^{ - {2 \over {15}}}}\)

c) \(\root 3 \of {{2 \over 3}\root 3 \of {{{2 \over 3}} \sqrt {{2 \over 3}} } } = {\left( {{2 \over 3}{{\left( {{2 \over 3}} \right)}^{{1 \over 3}}}{{\left( {{2 \over 3}} \right)}^{{1 \over 6}}}} \right)^{{1 \over 3}}} = {\left( {{{\left( {{2 \over 3}} \right)}^{1 + {1 \over 3} + {1 \over 6}}}} \right)^{{1 \over 3}}} = {\left( {{{\left( {{2 \over 3}} \right)}^{{3 \over 2}}}} \right)^{{1 \over 3}}} = {\left( {{2 \over 3}} \right)^{{1 \over 2}}}\)

d) \(\sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{{{11} \over {16}}}} = \left( {{a^{{1 \over 2}}}.{a^{{1 \over 4}}}.{a^{{1 \over 8}}}.{a^{{1 \over {16}}}}} \right):{a^{{{11} \over {16}}}} = {a^{{{15} \over {16}}}}:{a^{{{11} \over {16}}}} = {a^{{1 \over 4}}}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)