Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 19 trang 82 SGK Đại số và Giải tích 12 Nâng...

Bài 19 trang 82 SGK Đại số và Giải tích 12 Nâng cao, Đơn giản biểu thức...

Đơn giản biểu thức. Bài 19 trang 82 SGK Đại số và Giải tích 12 Nâng cao - Bài 2. Lũy thừa với số mũ thực

Bài 19. Đơn giản biểu thức

a) \({a^{ - 2\sqrt 2 }}{\left( {{1 \over {{a^{ - \sqrt 2  - 1}}}}} \right)^{\sqrt 2  + 1}}\);         

b) \({\left( {{{{a^{\sqrt 3 }}} \over {{b^{\sqrt 3  - 1}}}}} \right)^{\sqrt 3  + 1}}{{{a^{ - 1 - \sqrt 3 }}} \over {{b^{ - 2}}}};\)

c) \({{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1;\) 

d) \(\sqrt {{{\left( {{x^\pi } + {y^\pi }} \right)}^2} - {{\left( {{4^{{1 \over \pi }}}xy} \right)}^\pi }} ;\)

Advertisements (Quảng cáo)

a) \({a^{ - 2\sqrt 2 }}{\left( {{1 \over {{a^{ - \sqrt 2  - 1}}}}} \right)^{\sqrt 2  + 1}} = {a^{ - 2\sqrt 2 }}{\left( {{a^{\sqrt 2  + 1}}} \right)^{\sqrt 2  + 1}} = {a^{ - 2\sqrt 2 }}{a^{3 + 2\sqrt 2 }} = {a^3}\)

b) \({\left( {{{{a^{\sqrt 3 }}} \over {{b^{\sqrt 3  - 1}}}}} \right)^{\sqrt 3  + 1}}{{{a^{ - 1 - \sqrt 3 }}} \over {{b^{ - 2}}}} = {{{a^{3 + \sqrt 3 }}} \over {{b^2}}}.{{{a^{ - 1 - \sqrt 3 }}} \over {{b^{ - 2}}}} = {a^2}\)

c) \({{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1 = {{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }} + {{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}}\)

\( = {{2{a^{2\sqrt 2 }} - 2{a^{\sqrt 2 }}{b^{\sqrt 3 }}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} = {{2{a^{\sqrt 2 }}\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} = {{2{a^{\sqrt 2 }}} \over {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\)

d) \(\sqrt {{{\left( {{x^\pi } + {y^\pi }} \right)}^2} - {{\left( {{4^{{1 \over \pi }}}xy} \right)}^\pi }}  = \sqrt {{x^{2\pi }} + {y^{2\pi }} - 2{x^\pi }{y^\pi }}  = \sqrt {{{\left( {{x^\pi } - {y^\pi }} \right)}^2}}  = \left| {{x^\pi } - {y^\pi }} \right|\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)