. Bài 4 trang 31 SGK Hình học 12 Nâng cao - Ôn tập chương I - Khối đa diện và thể tích của chúng
Bài 4. Cho khối làng trụ đứng \(ABC.A’B’C’\) có diện tích đáy bằng \(S\) và \(AA’ = h\). Một mặt phẳng \((P)\) cắt các cạnh \(AA’, BB’, CC’\) lần lượt tại \({A_1},{B_1}\) và . Biết \(A{A_1} = a,B{B_1} = b,CC’ = c\).
a) Tính thể tích hai phần của khối lăng trụ được phân chia bởi mặt phẳng \((P)\).
b) Với điều kiện nào của \(a, b, c\) thì thể tích hai phần đó bằng nhau ?
Advertisements (Quảng cáo)
a) Kẻ đường cao \(AI\) của tam giác \(ABC\) thì \(AI \bot \left( {BCC’B’} \right)\) \(\Rightarrow AI = d\left( {{A_1};\left( {BCC’B’} \right)} \right)\). Ta có:
\(\eqalign{
& {V_{_{ABC.{A_1}{B_1}{C_1}}}} = {V_{{A_1}.ABC}} + {V_{{A_1}BC{C_1}{B_1}}} \cr
& = {1 \over 3}{\rm{aS + }}{1 \over 3}{S_{BC{C_1}{B_1}}}.AI \cr
& = {1 \over 3}aS + {1 \over 3}.{1 \over 2}\left( {b + c} \right).BC.AI \cr
& = {1 \over 3}aS + {1 \over 3}\left( {b + c} \right)S = {1 \over 3}\left( {a + b + c} \right)S \cr
& {V_{{A_1}{B_1}{C_1}A’B’C’}} = {V_{ABC.A’B’C’}} - {V_{ABC.{A_1}{B_1}{C_1}}} \cr
& = Sh - {1 \over 3}\left( {a + b + c} \right)S = {1 \over 3}\left[ {\left( {h - a} \right) + \left( {h - c} \right) + \left( {h - c} \right)} \right]S \cr} \)
b) \({V_{ABC.{A_1}{B_1}{C_1}}} = {V_{{A_1}{B_1}{C_1}.A’B’C’}} \Leftrightarrow {1 \over 3}\left( {a + b + a} \right)S = {1 \over 2}Sh \Leftrightarrow 3h = 2\left( {a + b + c} \right)\)