Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 10 trang 93 Hình học 12: Cho điểm M(2 ; 1...

Bài 10 trang 93 Hình học 12: Cho điểm M(2 ; 1 ; 0) và mặt phẳng (α): x + 3y - z - 27 = 0....

Bài 10 trang 93 SGK Hình học 12: Ôn tập chương III - Phương pháp toạ độ trong không gian. Trong hệ toạ độ Oxyz, cho điểm M(2 ; 1 ; 0) và mặt phẳng (α): x + 3y - z - 27 = 0.

Bài 10. Trong hệ toạ độ \(Oxyz\), cho điểm \(M(2 ; 1 ; 0)\) và mặt phẳng \((α): x + 3y - z - 27 = 0\). Tìm toạ độ điểm \(M’\) đối xứng với \(M\) qua \((α)\).

Gọi \(H\) là hình chiếu vuông góc của \(M\) lên mặt phẳng \((α)\) và \(M’\) là điểm đối xứng của \(M\) qua \((α)\) thì \(H\) là trung điểm của đoạn thẳng \(MM’\). Xét đường thẳng \(∆\) qua \(M\) và \(∆\) vuông góc với \((α)\).

Phương trình \(∆\) có dạng:

\(\left\{ \matrix{
x = 2 + t \hfill \cr
y = 1 + 3t \hfill \cr
z = - t \hfill \cr} \right.\)

Từ đây ta tìm được toạ độ điểm \(H\) là hình chiếu của \(M\) trên \((α)\).

Thay các tọa độ \(x,y,z\) theo \(t\) từ phương trình \(\Delta\) và phương trình \((\alpha)\) ta được:

Advertisements (Quảng cáo)

\(2+t+3(1+3t)-(-t)-27=0\Rightarrow 11t=22\)

\(\Rightarrow t=2\)

\(\Rightarrow H(4; 7; -2)\)

\(M\) và \(M’\) đối xứng nhau qua \((α)\) nên \(\overrightarrow {MM’}  = 2\overrightarrow {MH} \)

Gọi \((x, y, z)\) là toạ độ của  \(M’\) ta có: \(\overrightarrow {MM’}  = (x - 2; y - 1; z)\);  \(\overrightarrow {MH}  = (2; 6; -2)\)

\(\overrightarrow {MM’} \)=\(2\overrightarrow {MH} \)

\( \Leftrightarrow \left\{ \matrix{
x - 2 = 2.2 \Rightarrow x = 6 \hfill \cr
y - 1 = 2.6 \Rightarrow y = 13 \hfill \cr
z = 2.( - 2) \Rightarrow z = - 4 \hfill \cr} \right.\)

\( \Rightarrow M’ (6; 13; -4)\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)