Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài 54 trang 55 SBT Toán 7 Cánh diều: a) Đa thức...

Bài 54 trang 55 SBT Toán 7 Cánh diều: a) Đa thức bậc nhất có hệ số của biến bằng - 7 và hệ số tự do bằng 0...

Giải bài 54 trang 55 sách bài tập toán 7 - Cánh diều - Bài tập cuối chương 6

Question - Câu hỏi/Đề bài

Viết đa thức biến x trong mỗi trường hợp sau:

a) Đa thức bậc nhất có hệ số của biến bằng - 7 và hệ số tự do bằng 0

b) Đa thức bậc ba có hệ số của luỹ thừa bậc hai và bậc nhất của biến đều bằng 5

c) Đa thức bậc bốn có tổng hệ số của luỹ thừa bậc ba và bậc hai của biến bằng 6 và hệ số tự do bằng − 1

d) Đa thức bậc tám trong đó tất cả các hệ số của luỹ thửa bậc lẻ của biến đều bằng 0

Bước 1: Xác định dạng của các đa thức

+ Bậc nhất: \(ax + b\)

+ Bậc hai: \(a{x^3} + b{x^2} + cx + d\)

+ Bậc bốn: \(a{x^4} + b{x^3} + c{x^2} + dx + e\)

+ Bậc tám: \(a{x^8} + b{x^7} + c{x^6} + d{x^5} + e{x^4} + m{x^3} + n{x^2} + px + q\)

Advertisements (Quảng cáo)

Bước 2: Tìm các hệ số tương ứng của từng đa thức theo giả thiết (hệ số nào không có điều kiện thì giữ nguyên dạng biến)

Answer - Lời giải/Đáp án

a) Đa thức bậc nhất có hệ số của biến bằng -7 và hệ số tự do bằng 0 có dạng: \( - 7x\)

b) Đa thức bậc ba có hệ số của luỹ thừa bậc hai và bậc nhất của biến đều bằng 5 có dạng:

\(a{x^3} + 5{x^2} + 5x + d\) (với a, d là các số cho trước và a ≠ 0)

c) Đa thức bậc bốn có tổng hệ số của luỹ thừa bậc ba và bậc hai của biến bằng 6 và hệ số tự do bằng – 1

có dạng: \(a{x^4} + b{x^3} + c{x^2} + dx + e\)

Khi đó: \(b + c = 6 \Rightarrow c = 6 - b\)

Vậy đa thức cần tìm là: \(a{x^4} + b{x^3} + (6 - b){x^2} + dx - 1\) (với a, b, d là các số cho trước và a ≠ 0)

d) Đa thức bậc tám trong đó tất cả các hệ số của luỹ thửa bậc lẻ của biến đều bằng 0 có dạng:

\(a{x^8} + b{x^6} + c{x^4} + d{x^2} + e\) (với a, b, c, d, e là các số cho trước và a ≠ 0)

Advertisements (Quảng cáo)