Cho đa thức \(A(x) = - 11{x^5} + 4{x^3} - 12{x^2} + 11{x^5} + 13{x^2} - 7x + 2\)
a) Thu gọn và sắp xếp đa thức A(x) theo số mũ giảm dần của biến
b) Tìm bậc của đa thức A(x)
c) Tính giá trị của đa thức A(x) tại x = −1; x = 0; x = 2
Bước 1: Cộng, trừ các đơn thức có cùng số mũ của biến để rút gọn và sắp xếp đa thức rút gọn theo số mũ giảm dần của biến
Bước 2: Tìm bậc của đa thức là số mũ cao nhất của biến
Advertisements (Quảng cáo)
Bước 3: Thay x = -1, x = 0, x = 2 vào đa thức rút gọn để tính giá trị A(−1), A(0), A(2)
a) \(A(x) = - 11{x^5} + 4{x^3} - 12{x^2} + 11{x^5} + 13{x^2} - 7x + 2 = 4{x^3} + {x^2} - 7x + 2\)
b) Bậc của đa thức A(x) là 3
c) Ta có:
\(A( - 1) = 4.{( - 1)^3} + {( - 1)^2} - 7.( - 1) + 2 = - 4 + 1 + 7 + 2 = 6\)
\(A(0) = {4.0^3} + {0^2} - 7.0 + 2 = 2\)
\(A(2) = {4.2^3} + {2^2} - 7.2 + 2 = 32 + 4 - 14 + 2 = 24\)