Cho góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Đường trung trực của đoạn thẳng OA và đường trung trực của đoạn thẳng OB cắt nhau tại I. Chứng minh:
a) OI là tia phân giác của góc xOy;
b) OI là đường trung trực của đoạn thẳng AB.
- Chứng minh: \(\Delta OI{\rm{A}} = \Delta OIB\) nên \(\widehat {{O_1}} = \widehat {{O_2}}\) suy ra OI là tia phân giác của góc xOy.
- Chứng minh I nằm trên đường trung trực của đoạn thẳng AB.
Suy ra: OI là đường trung trực của đoạn thẳng AB.
Gọi D và F lần lượt là trung điểm của OA và OB.
a) Ta có:
DI là đường trung trực của OA nên IO = IA.
Advertisements (Quảng cáo)
FI là đường trung trực của OB nên IO = IB.
Suy ra IO = IA = IB
Xét ∆OIA và ∆OIB có:
OA = OB (giả thiết),
OI là cạnh chung,
IA = IB (chứng minh trên)
Do đó ∆OIA = ∆OIB (c.c.c).
Suy ra \({\hat O_1} = {\hat O_2}\) (hai góc tương ứng).
Do đó OI là tia phân giác của góc xOy.
Vậy OI là tia phân giác của góc xOy.
b) Theo giả thiết OA = OB suy ra O cách đều A và B.
Do đó O nằm trên đường trung trực của đoạn thẳng AB.
Theo chứng minh ở câu a: IA = IB suy ra I cách đều A và B.
Do đó I nằm trên đường trung trực của đoạn thẳng AB.
Vậy OI là đường trung trực của đoạn thẳng AB.