Tìm giá trị nhỏ nhất của biểu thức A.. Câu 141 trang 34 Sách Bài Tập (SBT) Toán lớp 7 tập 1 - Ôn tập chương I: Số hữu tỉ. Số thực
Tìm giá trị nhỏ nhất của biểu thức:
\({\rm{A}} = \left| {x - 2001} \right| + \left| {x - 1} \right|\)
Vì \(\left| {1 - x} \right| = \left| {x - 1} \right|\) nên \(A = \left| {x - 2001} \right| + \left| {x - 1} \right|\)
Advertisements (Quảng cáo)
\( \Rightarrow A = \left| {x - 2001} \right| + \left| {1 - x} \right| \ge \left| {x - 2001 + 1 - x} \right| \)
\(\Rightarrow\) A = 2000
Vậy biểu thức có giá trị nhỏ nhất A = 2000 khi x - 2001 và 1 – x cùng dấu
Vậy 1 ≤ x ≤ 2001