I. Nhân đơn thức với đơn thức
HĐ 1
Thực hiện phép tính:
a) \({x^2}.{x^4}\); b) \(3{x^2}.{x^3}\); c) \(a{x^m}.b{x^n}\) (a ≠ 0; b ≠ 0;m, n \(\in\) N).
Muốn thực hiện được phép tính, ta nhân hệ số của đơn thức thứ nhất với đơn thức thứ 2. Và nhân lũy thừa của biến trong đơn thức thứ nhất với lũy thừa của biến trong đơn thức thứ 2.
\({x^m}.{x^n} = {x^{m + n}}\)
a) \({x^2}.{x^4} = {x^{2 + 4}} = {x^6}\).
b) \(3{x^2}.{x^3} = 3.1.{x^{2 + 3}} = 3{x^5}\).
c) \(a{x^m}.b{x^n} = a.b.{x^{m + n}}\) (a ≠ 0; b ≠ 0;m, n \(\in\) N).
LT - VD 1
Advertisements (Quảng cáo)
Tính:
a) \(3{x^5}.5{x^8}\);
b) \( - 2{x^{m + 2}}.4{x^{n - 2}}\) (m, n \(\in\) N; n > 2).
Muốn nhân đơn thức A với đơn thức B, ta làm như sau:
Nhân hệ số của đơn thức A với hệ số của đơn thức B;
Nhân lũy thừa của biến trong A với lũy thừa của biên đó trong B;
Nhân các kết quả vừa tìm được với nhau.
a) \(3{x^5}.5{x^8} = 3.5.{x^5}.{x^8} = 15.{x^{5 + 8}} = 15.{x^{13}}\).
b) \( - 2{x^{m + 2}}.4{x^{n - 2}} = - 2.4.{x^{m + 2}}.{x^{n - 2}} = - 8.{x^{m + 2 + n - 2}} = - 8.{x^{m + n}}\) (m, n \(\in\) N; n > 2).