Trang chủ Lớp 7 Toán lớp 7 (sách cũ) Bài 56 trang 80 sgk Toán 7- tập 2, Sử dụng bài...

Bài 56 trang 80 sgk Toán 7- tập 2, Sử dụng bài 55 để chứng minh rằng:...

Sử dụng bài 55 để chứng minh rằng. Bài 56 trang 80 sgk toán lớp 7- tập 2 - Tính chất ba đường trung trực của tam giác

56. Sử dụng bài 55 để chứng minh rằng: Điểm cách đều ba đỉnh của một tam giác vuông là trung điểm của cạnh huyền của tam giác đó.

Từ đó hãy tính độ dài đường trung tuyến xuất phát từ đỉnh góc vuông theo độ dài cạnh huyền của một tam giác vuông.

Hướng dẫn:

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Advertisements (Quảng cáo)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB = \(\frac{1}{2}\) BC

mà AM = MB nên MA =\(\frac{1}{2}\) BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

Bạn đang xem bài tập, chương trình học môn Toán lớp 7 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)