Dựa vào định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh. Giải chi tiết bài 3 trang 59 sách bài tập toán 8 – Cánh diều - Bài 1. Định lí Thalès trong tam giác. Cho tam giác \(ABC\). Một đường thẳng \(d\) song song với \(BC\) và cắt các cạnh \(AB,...
Cho tam giác \(ABC\). Một đường thẳng \(d\) song song với \(BC\) và cắt các cạnh \(AB,AC\) của tam giác đó lần lượt tại \(M,N\) với \(\frac{{AM}}{{AB}} = \frac{1}{3}\) và \(AN + AC = 16\) cm. Tính \(AN\).
Dựa vào định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.
Advertisements (Quảng cáo)
Do \(MN//BC\) nên \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{1}{3}\).
Do đó \(\frac{{AN}}{1} = \frac{{AC}}{3} = \frac{{AN + AC}}{{1 + 3}} = \frac{{16}}{4} = 4\)
Suy ra \(AN = 4\)cm.