Cho tam giác \(ABC\) vuông ở \(A\) có \(AB = 3AC\) và điểm \(D\) thuộc cạnh \(AB\) sao cho \(AD = 2DB\). Chứng minh: \(\widehat {ADC} + \widehat {ABC} = 45^\circ \).
Áp dụng trường hợp đồng dạng thứ hai của tam giác: cạnh – góc – cạnh
Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng.
Advertisements (Quảng cáo)
Gọi \(E\) là trung điểm của \(AD\). Đặt \(AE = x,AC = x\).
Có \(AE = ED = DB,AB = 3AC\) nên \(ED = x,EB = 2x\) và \(CE = x\sqrt 2 \).
Xét hai tam giác \(EDC\) và \(ECB\), ta có: \(\widehat {CED} = \widehat {CEB}\) và \(\frac{{ED}}{{EC}} = \frac{{EC}}{{EB}}\)
\(=>\Delta EDC\backsim \Delta ECB\). Do đó \(\widehat {ECD} = \widehat {CEB}\).
Vì vậy \(\widehat {ADC} + \widehat {ABC} = \widehat {EDC} + \widehat {ECD} = \widehat {AEC}\).
Mặt khác, do tam giác \(AEC\) là tam giác vuông cân nên \(\widehat {AEC} = 45^\circ \).
Vậy \(\widehat {ADC} + \widehat {ABC} = 45^\circ \).