Trang chủ Lớp 8 SBT Toán 8 - Chân trời sáng tạo Bài 10 trang 11 SBT Toán 8 – Chân trời sáng tạo:...

Bài 10 trang 11 SBT Toán 8 - Chân trời sáng tạo: Từ một tấm tôn hình chữ nhật có chiều dài bằng a (cm), chiều rộng bằng b (cm)...

Sử dụng kiến thức nhân đơn thức với đa thức: Để nhân đơn thức với đa thức ta nhân đơn thức đó với từng hạng tử của đa thức. Gợi ý giải bài 10 trang 11 sách bài tập (SBT) toán 8 - Chân trời sáng tạo - Bài 2. Các phép toán với đa thức nhiều biến. Từ một tấm tôn hình chữ nhật có chiều dài bằng a (cm), chiều rộng bằng b (cm),...

Question - Câu hỏi/Đề bài

Từ một tấm tôn hình chữ nhật có chiều dài bằng a (cm), chiều rộng bằng b (cm), người ta cắt bỏ bốn hình vuông cạnh bằng x (cm) ở bốn góc, rồi gấp và hàn thành thùng không có nắp (Hình 1). Viết biểu thức biểu thị:

a) Thể tích nước tối đa mà thùng có thể chứa được.

b) Tổng diện tích của năm mặt của chiếc thùng.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Sử dụng kiến thức nhân đơn thức với đa thức: Để nhân đơn thức với đa thức ta nhân đơn thức đó với từng hạng tử của đa thức, rồi cộng các kết quả với nhau.

+ Sử dụng kiến thức cộng trừ hai đa thức để tính:

  • Viết hai đa thức trong ngoặc nối với nhau bằng dấu cộng (+) hay trừ (–).
  • Bỏ dấu ngoặc rồi thu gọn đa thức thu được.

+ Sử dụng kiến thức nhân hai đa thức để tính: Để nhân hai đa thức, ta lấy từng hạng tử của đa thức này nhân với đa thức kia, rồi cộng các kết quả với nhau.

Answer - Lời giải/Đáp án

Thùng trên có chiều dài là: \(a - 2x\left( {cm} \right)\), chiều rộng là \(b - 2x\left( {cm} \right)\), chiều cao là x (cm)

Advertisements (Quảng cáo)

a) Thể tích của thùng là:

\(V = \left( {a - 2x} \right)\left( {b - 2x} \right)x = \left[ {a\left( {b - 2x} \right) - 2x\left( {b - 2x} \right)} \right]x\)

\( = \left( {ab - 2ax - 2bx + 4{x^2}} \right)x = abx - 2a{x^2} - 2b{x^2} + 4{x^3}\)

Vậy thể tích nước tối đa mà thùng có thể chứa được là \(abx - 2a{x^2} - 2b{x^2} + 4{x^3}\left( {c{m^3}} \right)\)

b) Tổng diện tích năm mặt của chiếc thùng là:

\(S = \left( {a - 2x} \right)\left( {b - 2x} \right) + 2x\left( {a - 2x} \right) + 2x\left( {b - 2x} \right)\)

\( = a\left( {b - 2x} \right) - 2x\left( {b - 2x} \right) + 2ax - 4{x^2} + 2bx - 4{x^2}\)

\( = ab - 2ax - 2bx + 4{x^2} + 2ax - 4{x^2} + 2bx - 4{x^2}\)

\( = ab + \left( {2ax - 2ax} \right) + \left( {2bx - 2bx} \right) + \left( {4{x^2} - 4{x^2} - 4{x^2}} \right) = ab - 4{x^2}\)

Vậy tổng diện tích của năm mặt của chiếc thùng là \(ab - 4{x^2}\left( {c{m^2}} \right)\)

Advertisements (Quảng cáo)