Chứng tỏ đồ thị hàm số \(y = \left( {m - 1} \right)x + m - 2\) luôn đi qua một điểm cố định.
Gọi điểm \(\left( {{x_0};{y_0}} \right)\) là điểm cố định mà đồ thị hàm số \(y = f\left( x \right)\) luôn đi qua.
Do đó, \({y_0} = f\left( {{x_0};m} \right)\) có nghiệm đúng với mọi m.
Giả sử điểm cố định của đồ thị hàm số \(y = \left( {m - 1} \right)x + m - 2\) là điểm \(M\left( {{x_0};{y_0}} \right)\)
Advertisements (Quảng cáo)
Thay \(x = {x_0}\) và \(y = {y_0}\) vào \(y = \left( {m - 1} \right)x + m - 2\) ta được:
\({y_0} = \left( {m - 1} \right){x_0} + m - 2\)
\(m{x_0} - {x_0} + m - 2 - {y_0} = 0\)
\(m\left( {{x_0} + 1} \right) - \left( {{y_0} + {x_0} + 2} \right) = 0\) (1)
Để (1) luôn đúng với mọi giá trị của m thì \({x_0} + 1 = 0\) và \({y_0} + {x_0} + 2 = 0\)
Suy ra: \({x_0} = - 1\) và \({y_0} = - 1\)
Vậy điểm \(M\left( { - 1; - 1} \right)\) là điểm cố định mà đồ thị hàm số \(y = \left( {m - 1} \right)x + m - 2\) luôn đi qua.